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Abstract

The main emphasis reported in this report is to provide intuitionistic fuzzy logic

tools for handling the data with uncertainty. On the foundation of the theory of

intuitionistic fuzzy sets, this work extends the traditional research by presenting

new definitions and desirable properties of intuitionistic fuzzy statistical tools also.

The work starts with defining intuitionistic fuzzification and intuitionistic de-

fuzzification functions which are the important components of intuitionistic fuzzy

logic controller (IFLC). An architecture of IFLC is proposed and its capability is

clearly elucidated through suitable illustrations.

Further, new intuitionistic fuzzy operators are defined and applied in intu-

itionistic fuzzy inference engine to establish a flexible mathematical framework

to model the vagueness, which will find applications in noise removal in image

processing. Comparitive analysis of intuitionistic fuzzy filters with traditional

and fuzzy filters is done and the experimental results illustrate the validity of the

proposed technique.

Intuitionistic fuzzy random variable (IFRV) is defined and some of its interest-

ing properties are studied. The expectation, variance and moments of IFRV are

discussed. Intuitionistic fuzzy number is defined as a generalization of Wu’s fuzzy
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number. In addition, intuitionistic fuzzy statistical tools like mean, median, mode

for intuitionistic fuzzy data are explained through suitable illustrations which are

helpful in designing intuitionistic fuzzy filters.

Multi-period decision making model is proposed using intuitionistic fuzzy mov-

ing aggregation operator under uncertain environment and compared with existing

crisp and fuzzy moving average operators. The validity of the proposed technique

is verified with the economical time series data, to forecast the gross domestic

product (GDP) growth of Indian economy.

The concepts of distance, eccentricity, radius, diameter and center of an in-

tuitionistic fuzzy tree are defined. Some of the domination parameters like inde-

pendent domination, connected domination and total domination on intuitionistic

fuzzy trees are investigated. The procedure for intuitionistic fuzzification for nu-

merical data set is proposed. Further, intuitionistic fuzzy tree center-based clus-

tering algorithm is designed. The effectiveness of the algorithm is checked with a

numerical dataset and compared with two existing clustering methods.

A hypergraph is a set V of vertices and a set E of non-empty subsets of V ,

called hyperedges. Unlike graphs, hypergraphs can perform higher-order interac-

tions in social and communication networks. Directed hypergraphs are much like

directed graphs. Colors are used to distinguish the classes. Coloring a hypergraph

H must assign atleast two different colors to the vertices of every hyperedge. That

is, no edge is monochromatic. Here, p-coloring, K-coloring, p-chromatic number,

spike and spike reduction of intuitionistic fuzzy directed hypergraph (IFDHG),

skeleton of spike reduction are studied. Further, a few properties of coloring of

IFDHG are discussed. Also, it has been proved that in an ordered IFDHG, a

vi



primitive coloring is a K-coloring of the IFDHG.

Upper and lower truncation, core aggregate of IFDHG, conservative K-coloring

of IFDHG, chromatic values of intuitionistic fuzzy colorings, elementary center of

intuitionistic fuzzy coloring, f -chromatic value of intuitionistic fuzzy coloring,

intersecting IFDHG, K-intersecting IFDHG, strongly intersecting IFDHG were

studied. Also it has been proved that IFDHG H is strongly intersecting if and

only if it is K-intersecting.

Essentially intersecting, essentially strongly intersecting, skeleton intersecting,

non-trivial, sequentially simple and essentially sequentially simple IFDHGs are

defined. Also, it has been proved that if IFDHG H is ordered and essentially

intersecting, then χ(H) ≤ 3. An IFDHG H is strongly intersecting if and only

if H〈ri,si〉 is intersecting for every 〈ri, si〉 ∈ F (H) is proved and an application of

IFDHG in molecular structure representation is also given.

Fuzzy sets and intuitionistic fuzzy sets handle uncertainty and vagueness which

Cantorian sets could not handle. Temporal intuitionistic fuzzy set with a time

domain is an extension of intuitionistic fuzzy set and is useful in dealing with

uncertainty and vagueness present in the time dependent real environment. A

new type of intuitionistic fuzzy set called multi-parameter temporal intuitionistic

fuzzy set is proposed and it’s operations are defined. Further, extended triangular

membership and non-membership functions for temporal intuitionistic fuzzy sets

and multi-parameter temporal intuitionistic fuzzy sets are defined. Geometric

interpretation of a temporal intuitionistic fuzzy set is also dealt with a suitable

example.

Finally, a study on Indian Universities Ranking using InterCriteria Decision

vii



Making (ICDM) Method is given. This approach is used to real data extracted

from Indian University Ranking System for the year 2017 by National Institu-

tional Ranking Framework (NIRF). The NIRF provides for ranking of institutes

in five broad generic parameters, namely: i) Teaching, Learning and Resources;

ii) Research and Professional Practice; iii) Graduation Outcome; iv) Outreach

and Inclusivity; and v) Perception. The aim is to analyze the correlation between

the above-said parameters in the Ranking System.

viii



Chapter 1

Introduction

This chapter is an exhaustive review of the literature on sets, fuzzy sets,

intuitionistic fuzzy sets, fuzzy logic controller and intuitionistic fuzzy logic con-

troller, intuitionistic fuzzy logic tools. Some basic definitions and terminology

which are used in constructing the properties relating to the report are given.

1.1 Fuzzy sets

A crisp set is defined in such a way as to dichotomize the individuals in

some given universe of discourse into two groups: members (those which certainly

belong to the set) and non-members (those which certainly do not). A sharp

unambiguous distinction exists between the members and non-members of the set

[45].

A set is described by a function, usually called a characteristic function, that

declares which elements of X are members of the set and which are not. That is,

the characteristic function of a set assigns a value of either 1 or 0 to each individual

in the universal set, thereby discriminating between members and non-members



of the set under consideration.

Mathematically, the characteristic function of a set A maps elements of the

universal set X to the two-valued set {0, 1}, which is formally expressed by χA :

X → {0, 1}. For each x ∈ X, when χA(x) = 1, x is declared to be a member of

A; when χA(x) = 0, x is declared to be a non-member of A.

Gone are the days of two-valued logic and now this is an era of multi-valued

logic, where characteristic function may fail to deal situations with ambiguity. For

example, black or white can have many meanings. Grey is neither black nor white

but in between both. Hence, imprecision plays an important role in information

representation in real process where the increase in precision would otherwise

become unmanageable.

Lotfi A. Zadeh founded fuzzy sets in 1965, to make set theory more intuitive

and applicable to the real world problems [110]. A fuzzy set is any set that allows

its elements to have different degree of membership in the interval [0, 1]. As fuzzy

set is an extraordinary tool for representing human knowledge and perception,

it has achieved successful applications in various fields of fuzzy decision-making,

approximate reasoning, statistics with imprecise probabilities and fuzzy control

[38, 85].

Two years after the concept of fuzzy set was proposed, L-fuzzy set was devel-

oped by Gogeun as a generalization of fuzzy sets. Nevertheless, in 1973, Zadeh

himself established that knowledge can be better represented by means of some

generalizations of fuzzy sets. Thus, the extensions of fuzzy set theory arise in this

way. One such extension is on statistical methods.
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Currently, there are more researches focusing on the fuzzy statistical analy-

sis and applications [30, 35, 40, 91]. New statistical approach for fuzzy data was

given by Ching-Min Sun and Berlin Wu [36]. Wu and Sun illustrated about

interval-valued statistics, fuzzy logic and its applications. Liu illustrated uncer-

tainty theory based on fuzzy set. Fuzzy mean, fuzzy median, fuzzy mode were

defined by Hung T. Nguyen and Berlin Wu [71].

Cornelis et al. [38] highlighted the applications of fuzzy techniques in image

processing. Mike Nachtegael, Dimitri Van de Ville, Etienne E. Kerre , Russo

[70, 90] introduced fuzzy filters and its extension.

Timothy J. Ross [100] developed fuzzy decision making by describing basic

concepts in multi objective decisions. Imprecise information are aggregated by

fuzzy OWA operators, several extensions and generalizations were studied [105–

108]. Xu defined fuzzy harmonic mean operators and presented an approach to

multiple attribute group decision making with a practical example [103].

Merigo proposed decision making with fuzzy moving averages and OWA opera-

tors [64]. Merigo further extended and generalized moving average using distance

measure [63]. Fuzzy ordered weighted moving average is introduced and studied

in [61, 62] and aggregation operators between the fuzzy minimum and the fuzzy

maximum in a dynamic process is defined with the moving average. Properties

are studied and a wide range of particular cases are presented including fuzzy

moving average, fuzzy moving maximum and fuzzy moving minimum in [59, 60].

3



1.2 Fuzzy logic

Fuzzy logic is an approach to compute the values based on “degrees of truth”

rather than the usual “true or false” boolean logic. In other words, an organized

method for dealing imprecise data is called fuzzy logic, where the data are consid-

ered as fuzzy sets. Fuzzy logic is basically a multivalued logic that allows values

between conventional evaluations like yes or no, true or false, black or white, etc.

Zadeh introduced the term fuzzy logic in his seminal work “Fuzzy sets”, which

describes the mathematics of fuzzy set theory (1965) [45].

In other words, fuzzy logic is not logic that is fuzzy, but logic that is used to

describe fuzziness. Fuzziness in the fuzzy set is characterized by its membership

function, which represents the degree of truth in fuzzy logic.

Membership functions

Amembership function is a curve that defines how each point in the input space

is mapped to a membership value between 0 and 1 [94]. Membership functions

have different shapes, such as the triangular, trapezoidal, gaussian, bell-shaped,

sigmoidal, S-curve, Z-curve and Pi-curve. Defining appropriate membership func-

tion is an important task for any actual application using fuzzy logic. For the

systems with variation in a short interval of time, a triangular or trapezoidal

curve can be selected and for the system with very high control accuracy, gaus-

sian or S-curve curve can be utilized. Most frequently used membership functions

are triangular, trapezoidal, Gaussian, bell-shaped, sigmoidal and simplest among

them are formed using straight lines.

Another important concept in fuzzy logic is IF-THEN rule. The role of fuzzy

4



logic is to map an input space to an output space, and the primary mechanism for

doing this is a list of IF-THEN statements called rules. In fuzzy logic, mapping

rules can be specified in terms of words rather than numbers. Computing with

words explores imprecision and tolerance.

IF-THEN Rules

Fuzzy sets and fuzzy operators are the subjects and verbs of fuzzy logic. These

IF-THEN rule statements are used to formulate the conditional statements that

comprise fuzzy logic [117]. A single fuzzy IF-THEN rule assumes the form

If X is A then Y is B

where A, B are linguistic values defined by fuzzy sets on the ranges (universes

of discourse) X and Y respectively. The IF-part of the rule X is A, called the

antecedent or premise, while THEN-part of the rule Y is B, called the consequent

or conclusion. An example of such a rule might be

If education is good then salary is high.

Note that good is represented as a number between 0 and 1, and so the antecedent

is an interpretation that returns a single number between 0 and 1. On the other

hand, high is represented as a fuzzy set, and so the consequent is an assignment

that assigns the entire fuzzy set B to the output variable Y .

Fuzzy operators

In fuzzy logic, operators such as AND, OR and NOT are implemented by

intersection (min), union (max) and complement operators and are applied in

various control applications like air-conditioner, anti-braking system in vehicles,

control on traffic lights and washing machines.

5



1.3 Fuzzy logic controller

The basic idea behind fuzzy logic controller (FLC) is to incorporate the “expert

experience” of a human operator in the design of the controller in controlling

a process whose input - output relationship is described by collection of fuzzy

control rules (e.g. IF-THEN rules) involving linguistic variables, rather than a

complicated dynamic model. FLC is the best utilized controller in complex ill-

defined process that can be controlled by a skilled human operator without much

knowledge of their underlying dynamics [58].

The FLC provides superior results to those obtained by conventional control

systems and appears very useful for complex problems whose available information

are interpreted qualitatively, inexactly, or uncertainly.

A typical architecture of FLC is shown in Figure 1.1, comprises of a fuzzifier,

fuzzy rule base, inference engine and a defuzzifier.

Fuzzification

Fuzzification is the process of making a crisp quantity into fuzzy. In real life

applications, due to the inevitable measurement and inaccuracy, the exact values

of the measured quantities are not known and so the problem involved in that

situation are usually defined in an uncertain way. The uncertainty happens to

arise because of imprecision, ambiguity or vagueness and can be represented by a

membership function.

Fuzzification determines the degree of membership. In order to express the

system inputs in linguistic terms, fuzzification process is used, so that the rules

6



Crisp input
Fuzzification Defuzzification

Inference engine
Fuzzy outputFuzzy input

Rules IF-THEN

Crisp output

Figure 1.1: Fuzzy logic controller

can be applied in a simple manner to express a complex system. In fuzzy con-

trol applications, the observed data is crisp. Therefore, fuzzification is necessary

during an earlier stage to manipulate the data in FLC.

Fuzzy Rules

Human beings make decisions on rules. Knowingly or unknowingly all the

decisions are based on computer like IF-THEN statements.

Example

If the weather is bad, then decide not to go out.

If the forecast says, the weather will be bad today, but fine tomorrow, then deci-

sion would be not to go today and postpone it till tomorrow.

7



Rules associate ideas and rotate one event to another. Fuzzy machines mimic

the human behaviour and work in the same manner, where the decision are re-

placed by fuzzy sets and the rules are replaced by fuzzy rules. In a FLC, a rule base

is constructed to control the output variable. A fuzzy rule is a simple IF-THEN

rule with a condition and a conclusion [52].

Fuzzy Inference Systems

Fuzzy inference is the process of formulating the mapping from a given input

to an output using fuzzy logic. The mapping provides a basis from which decisions

can be made. The process of fuzzy inference involves : “membership functions,

logical operations and IF-THEN rules”.

Types of Fuzzy inference systems

There are two types of fuzzy inference systems: Mamdani-type and Sugeno-type.

• Mamdani fuzzy system is based on fuzzy MAX-MIN operator.

• Sugeno fuzzy system are used to develop a systematic approach in creating

and analyzing the fuzzy system and for sample data-based fuzzy modeling.

Mamdani Fuzzy Systems

The Mamdani fuzzy systems are fuzzy systems with fuzzy IF-THEN rules in

the form of

If X is P and Y is Q and . . . THEN Y is R

8



where P , Q, . . . and R are fuzzy sets.

Sugeno Fuzzy Systems or Takagi Sugeno Fuzzy System (TSK)

TSK fuzzy systems are fuzzy systems with IF-THEN rules in the form

If X is P and Y is Q THEN Z = f(X, Y )

where P and Q are fuzzy set in the antecedent, while Z = f(X, Y ) is a crisp

function in the consequent.

Defuzzification

Defuzzification means the fuzzy-to-crisp conversions. In general, both the

inputs and outputs of a fuzzy inference engine are fuzzy variables. The fuzzy

results generated cannot be used to the real time applications and it is necessary

to convert the fuzzy quantities into crisp quantities for further processing. So the

fuzzifier and defuzzifier blocks are needed to accept crisp inputs and produce crisp

outputs.

1.4 Intuitionistic fuzzy sets

In real life, due to the insufficiency in the availability of information, the eval-

uation of membership values is not possible upto our satisfaction. Therefore, a

generalization of fuzzy sets was introduced by Krassimir T Atanassov (1983) as in-

tuitionistic fuzzy set (IFS), which include both membership and non-membership

of an element in the set. However, in reality, a part remains indeterministic on

which hesitation survives which is called as intuitionistic fuzzy index. In such

situations, IFSs seem to be applicable to address the issues of uncertainty. In

9



case, when the degree of rejection is defined simultaneously with the degree of

acceptance and when both these degrees are not complementary to each other,

then IFS can be used as a more general tool for describing uncertainty.

IFSs have got their applications in different fields such as image processing

[74, 98], statistics [76], decision-making problems [16, 56, 57], pattern recognition

and so on. Among these, the works of Krassimir T Atanassov [10–12, 17, 18],

Krassimir T Atanassov and Gargov [15], Szmidt and Kacprzyk [96, 97] are note-

worthy. The notion of vague set is the same as that of IFS, is pointed out by

Bustince and Burillo [32]. In 1993, Gau and Buehrer [46] introduced the concept

of vague sets which is another generalization of fuzzy sets.

Ioannis et al. [48] initiated an attempt towards intuitionistic fuzzy image

processing and presented an intuitive approach for intuitionistic fuzzification of

images. Ioannis and George have worked on IF contrast enhancement. Tamalika

Chaira [98] have proposed a new method for IF segmentation and edge detection

of medical images. Parvathi et al. have developed an algorithm on intuitionistic

fuzzy approach for image enhancement using contrast intensification operator [73].

Also some attempt was made to define theoretical concepts in IF statistical for

filters by Parvathi et al. is an initiative to define theoretical concepts [75].

Buhaescu defined @ operator [27] and Atanassov introduced G(α,β) operator

and some of its properties. Ranjit Biswas and Roy gave some operations on IFSs

[39]. Angelov have defined defuzzification over intuitionistic fuzzy sets in [6].

10



1.5 Motivation

The design of traditional logic controller usually requires a mathematical model

of the process involved. The construction of such model is difficult for many real

world applications due to partial information. The imprecise description of the

problem can be handled as an alternative approach by expert human operators.

This modeling leads to the usage of fuzzy concepts which is close to human per-

ception than traditional logical system.

Data given as inputs to a fuzzy logic system and data used for tuning, are

often noisy, thus bearing an amount of uncertainty. Designing of FLC involves

definition of fuzzy sets. FLC for noisy images is designed using fuzzy filtering

techniques applied in inference engine.

Many research works are going in filtering techniques from non-fuzzy to fuzzy.

Traditional statistical filters are defined in digital image processing by Gonzalez

[84]. In literature, several authors were working on fuzzy filters and their exten-

sions. Pal et al. worked on image enhancement using fuzzy set and designed an

algorithm using contrast intensification operator [72]. Sharmistha Bhattacharya

et al. proposed a contrast removal fuzzy operator in image processing [92]. C.V.

Jawahar developed fuzzy statistics for digital images which is an alternative repre-

sentation to hard statistics [51]. Farizio Russo presented an overview of non-linear

fuzzy filters on their similarities and differences [90].

Mike Natchtegael et al. presented an overview of existing classical and fuzzy

filters for noise reduction and a comparison study has been reported in [70]. Ville.

D. Nachtegael, D. Weken, E. Kerre, W. Philips and I. Lemahieu introduced a two
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staged noise reduction technique with additive noise by fuzzy image filtering [101].

J. Sorubal Marcel et al. proposed fuzzy approach for detecting and removing

salt and pepper noise. Jagadish H. Pujar [50] described a robust fuzzy median fil-

ter for impulse noise reduction of gray scale images. Bhavana Deshpande designed

a fuzzy based median filtering for noise removal along with the fuzzy rule based

approach to improve the filter performance in salt-and-pepper noise detection and

cancellation [26].

Among extensions of fuzzy sets, IFSs [9, 15] provide a intuitive framework to

deal vagueness from imprecise information by considering non-membership values

in addition to membership values. IFS plays an important role in the field of engi-

neering, statistics, graph theory, signal processing, medical diagnosis [49], pattern

recognition, decision making and expert system. Agarwal et al. presented design

of a probabilistic intuitionistic fuzzy rule based controller. Akram et al. devel-

oped intuitionistic fuzzy logic (IFLC) for heater fans [4] and washing machines

[5]. Thus, so far IFLCs are designed to specific applications.

Designing of a common IFLC is not found anywhere in the literature. Hence

authors are motivated to design an IFLC using intuitionistic fuzzification and

defuzzification functions. Moreover, intuitionistic fuzzy filtering techniques in

images are considered to verify the effectiveness of the proposed IFLC.

IFS theory provides a tool to derive filters for image processing in intuition-

istic fuzzy (IF) environment. IF statistical tools like mean, median, mode for IF

data defined by Parvathi et al. [75, 76] is very helpful for developing IF filters in

image processing. Further, the authors have applied IF operators in intuitionistic

12



fuzzy inference engine to establish a flexible mathematical framework for image

processing.

Also, application of IF statistics is more futuristic and are widely used in

decision making problems [113]. Hence, IF statistical tools and IF averaging

operators are also introduced and studied.

1.6 Organisation of the Report

The title of the report is “Designing and developing image editing tools in

MATLAB using intuitionistic fuzzy sets” is divided into ten chapters. The sum-

mary of each chapter is as follows:-

Chapter I gives a brief introduction, review of literature, basic definitions and

terminology relating to this study.

Chapter II deals with fuzzification and defuzzification of intuitionistic fuzzy

sets. The term intuitionistic fuzzification function refers to formulating mem-

bership and non-membership functions of an IFS. An attempt has been made to

introduce various types of intuitionistic fuzzification functions such as triangu-

lar, trapezoidal, Gaussian, bell-shaped, sigmoidal, S-shaped, Z-shaped functions

which are more useful in modeling real world situations in IF environment.

IF-defuzzification function is a function used to convert membership and non-

membership values into precise quantity. The term IF-defuzzification function

(IFDF) refers to formulation of defuzzification function of an IFS. IF-defuzzification

functions such as triangular, trapezoidal, L-trapezoidal, R-trapezoidal, gaussian,

S-shaped, Z-shaped functions are defined. The proposed defuzzification techniques
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are useful to develop IFLC.

Chapter III is devoted to develop a common architecture of IFLC. The capa-

bility of the proposed architecture is clearly elucidated through the experimental

results. Further, IF operators are applied in intuitionistic fuzzy inference engine

to establish a flexible mathematical framework for image processing. Comparitive

analysis of intuitionistic fuzzy filters with traditional and fuzzy filters is done, ex-

perimental results illustrate the validity of the proposed technique and provided

that intuitionistic fuzzy filter gives better performance.

In Chapter IV, intuitionistic fuzzy random variable is defined and some of its

properties are discussed. Also, characteristics of intuitionistic fuzzy random vari-

able like expectation, variance and moments are described. Intuitionistic fuzzy

number is defined as a generalization of Wu’s fuzzy number. Statistical tools are

defined for intuitionistic fuzzy data and explained through suitable illustrations.

In addition, IF statistical tools are described which are helpful in designing intu-

itionistic fuzzy filtering algorithm.

In this chapter, an initiation is taken to model the vagueness associated with

the image which will find applications in noise removal in image processing. The

proposed algorithm removes the noise in the image and improves the image quality

without any loss of edge information. The performance of the proposed method

is tested in MATLAB simulations for an image that has been subjected to vari-

ous noises. Performance analysis is done on the basis of statistical measures like

correlation coefficient, peak signal to noise ratio and mean square error values.

In Chapter V, relation between intuitionistic fuzzy ordered weighted averaging

operator and Gα,β operator are introduced. Moreover, based on the newly defined
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relations IF set theory paves way for the introduction of several IF moving averages

like IF weighted moving average, IF ordered weighted moving average, IF ordered

weighted averaging-weighted moving average, IF induced ordered weighted mov-

ing average, IF weighted geometric moving average and IF weighted harmonic

moving average. Further, it is extended by using distance measures suggesting

the concept of IF moving average distance, IF ordered weighted moving average

distance and the IF induced ordered weighted moving average distance operator.

Also, a model is proposed using intuitionistic fuzzy moving aggregation operator

under multi-period decision making with uncertainty and compared with other

existing crisp techniques. The validity of the proposed technique is verified with

the economical time series data, to forecast the gross domestic product of Indian

Economy. The study shows that intuitionistic fuzzy moving aggregation operator

is a better tool to reflect the original forecast.

In Chapter VI, the concepts of distance, eccentricity, radius, diameter and cen-

ter of an intuitionistic fuzzy tree are defined. Some of the domination parameters

like independent domination, connected domination and total domination on intu-

itionistic fuzzy trees are investigated. The procedure for intuitionistic fuzzification

for numerical data set is proposed. Further, intuitionistic fuzzy tree center-based

clustering algorithm is designed. The effectiveness of the algorithm is checked

with a numerical dataset and compared with two existing clustering methods.

In Chapter VII, p-coloring, K-coloring, p-chromatic number, spike and spike

reduction of intuitionistic fuzzy directed hypergraph (IFDHG), skeleton of spike

reduction are studied. Further, a few properties of coloring of IFDHG are dis-

cussed. Also, it has been proved that in an ordered IFDHG, a primitive coloring
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is a K-coloring of the IFDHG.

Upper and lower truncation, core aggregate of IFDHG, conservative K-coloring

of IFDHG, chromatic values of intuitionistic fuzzy colorings, elementary center of

intuitionistic fuzzy coloring, f -chromatic value of intuitionistic fuzzy coloring,

intersecting IFDHG, K-intersecting IFDHG, strongly intersecting IFDHG were

studied. Also it has been proved that IFDHG H is strongly intersecting if and

only if it is K-intersecting.

In Chapter VIII, essentially intersecting, essentially strongly intersecting, skele-

ton intersecting, non-trivial, sequentially simple and essentially sequentially simple

IFDHGs are defined. Also, it has been proved that if IFDHG H is ordered and

essentially intersecting, then χ(H) ≤ 3. An IFDHG H is strongly intersecting

if and only if H〈ri,si〉 is intersecting for every 〈ri, si〉 ∈ F (H) is proved and an

application of IFDHG in molecular structure representation is also given.

In Chapter IX, a new type of intuitionistic fuzzy set called multi-parameter

temporal intuitionistic fuzzy set is proposed and it’s operations are defined. Fur-

ther, extended triangular membership and non-membership functions for temporal

intuitionistic fuzzy sets and multi-parameter temporal intuitionistic fuzzy sets are

defined. Geometric interpretation of a temporal intuitionistic fuzzy set is also

dealt with a suitable example.

In Chapter X, a study on Indian Universities Ranking using InterCriteria Deci-

sion Making (ICDM) Method is given. This approach is used to real data extracted

from Indian University Ranking System for the year 2017 by National Institu-

tional Ranking Framework (NIRF). The NIRF provides for ranking of institutes

in five broad generic parameters, namely: i) Teaching, Learning and Resources; ii)
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Research and Professional Practice; iii) Graduation Outcome; iv) Outreach and

Inclusivity; and v) Perception. The aim is to analyze the correlation between the

above-said parameters in the Ranking System.
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Chapter 2

Fuzzification and defuzzification

of intuitionistic fuzzy sets

2.1 Introduction

Intuitionistic fuzzification functions provide a flexible model to eloborate un-

certainty and vagueness involved in real world problems. In order to employ

intuitionistic fuzzy logic, operations, rules in mathematical modeling, it is neces-

sary to convert crisp values into intuitionistic fuzzy pairs (IFPs) 1. This process is

known as intuitionistic fuzzification. In this chapter, several types of membership

and non-membership functions with hesitancy index as an arbitrary parameter

for triangular, trapezoidal, Gaussian, bell-shaped, sigmoidal, S-shaped, Z-shaped

functions characterizing IFSs are defined and studied. Hence, an attempt has

been made to formulate fuzzification and defuzzification functions for IFSs.

Appropriate intuitionistic fuzzy membership function for a specific purpose can

be selected and applied.

1Refer Page 91 for the mathematical definition of IFPs
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2.2 Preliminaries

In this section, some basic definitions, which are pre-requisites for the study, are

outlined.

Definition 2.2.1. [110]

Let X be a nonempty set. A fuzzy set Ã drawn from X is an object of the form

Ã = {〈x, µÃ (x) : x ∈ X}

where µÃ : X → [0, 1] is the membership function of the fuzzy set Ã.

Example 2.2.1. Let X={20, 21, 25, 26, 28, 81} be the universe of discourse rep-

resenting people’s age in a house. Let Ã be the fuzzy set representing the youth

people.

A = {(20, 1), (21, 0.9), (25, 0.5), (26, 0.40), (28, 0.20), (81, 0)}

Here Ã indicates that the person with age 20 is an exact member of the set youth

with maximum grade 1 and the person with age 21 is also a member of grade 0.9

and so on. Note that a person whose age is 81 is not at all a member of the youth

set.
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Definition 2.2.2. [9]

Let the universal set X be fixed. An intuitionistic fuzzy set A in X is defined

as an object of the form A = {〈x, µA(x), νA(x)〉 : x ∈ X} where the functions

µA : X → [0, 1] and νA : X → [0, 1] define the degrees of membership and

non-membership of the element x ∈ X respectively, and for every x ∈ X in A,

0 ≤ µA(x) + νA(x) ≤ 1 holds.

Note

(i) Membership function for an intuitionistic fuzzy set A on the universe of dis-

course X is defined as µA : X → [0, 1], where each element x is mapped to a value

between 0 and 1. The value µA(x) is called the membership value or degree of

membership of the element x in the IFS A.

(ii) Non-membership function for an intuitionistic fuzzy set A on the universe of

discourse X is defined as νA : X → [0, 1], where each element x is mapped to a

value between 0 and 1. The value νA(x) is called the non-membership value or

degree of non-membership of the element x in the IFS A.

Definition 2.2.3. [9]

For every common intuitionistic fuzzy subset A on X, πA(x) = 1−µA(x)−νA(x)

is called the intuitionistic fuzzy index or hesitancy index of x in A.

Note

πA(x) is the degree of indeterminacy of x ∈ X to the IFS A. πA(x) expresses

the degree of lack of knowledge of every x ∈ X belongs to IFS or not. Obviously,

for every x ∈ X, 0 ≤ πA(x) ≤ 1.
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2.3 Intuitionistic fuzzification functions

The term intuitionistic fuzzification functions refers to formulation of mem-

bership and non-membership functions of an IFS. In IFS, there are many ways to

characterize fuzziness to depict the membership and non-membership functions

graphically. The choice of which of the methods to be used depends entirely on the

problem under consideration. The graphical representations may include different

shapes formed using straight lines and simple curves. The formulated membership

and non-membership functions themselves can take any form like triangles, trape-

zoids, bell curves or any other shape as long as those shapes accurately represent

the distribution of information within the system.

The simplest membership and non-membership functions are formed using

straight lines. Among these, intuitionistic fuzzy triangular functions are formed

by the collection of three points forming a triangle and intuitionistic fuzzy trape-

zoidal functions are just a truncated triangle curve with a flat top.

The intuitionistic fuzzy Gaussian and bell-shaped functions are formed by

smooth curves and intuitionistic fuzzy sigmoidal functions are also simple curves

which is either open left or right. Intuitionistic fuzzy S-shaped and Z-shaped func-

tions are formed by polynomial based curves.

This section discusses the formulation and the features of the above-mentioned

intuitionistic fuzzy functions. Suitable illustrations are also dealtwith. Through-

out this chapter, A represents an intuitionistic fuzzy set and x ∈ A.
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2.3.1 Intuitionistic fuzzy triangular function (iftrif )

The intuitionistic fuzzy triangular function iftrif, is specified by three parameters,

a lower limit a, an upper limit c, and a value b, where a ≤ b ≤ c. The precise

appearance of the function is determined by the choice of the parameters a, b, c

which in turn forms a triangle. In this a and c locates the feet of the triangle and

the parameter b locates the peak.

Intuitionistic fuzzy triangular membership function of A takes the form

µA(x) =





0 ; x ≤ a

(x−a
b−a )− ǫ ; a < x ≤ b

( c−x
c−b )− ǫ ; b ≤ x < c

0 ; x ≥ c

The corresponding intuitionistic fuzzy triangular non-membership function is of

the form

νA(x) =





1− ǫ ; x ≤ a

1− (x−a
b−a ) ; a < x ≤ b

1− ( c−x
c−b ) ; b ≤ x < c

1− ǫ ; x ≥ c

The diagrammatic representation of membership and non-membership functions

are shown in Figure 2.1.
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Membership function

Non-membership
function

a b c0

0.5

1− ǫ
1

Figure 2.1: Intuitionistic fuzzy triangular function

Note

When ǫ = 0, iftrif tends to trif in fuzzy.

Note

Hereafter, ǫ is an arbitrary parameter chosen in such a way that µA(x)+νA(x)+ǫ =

1 and 0 < ǫ < 1.

Example 2.3.1. Suppose the room temperature varies from −5◦C to +5◦C,

then the corresponding membership and non-membership triangular functions for

approximately zero degree celsius temperature specified by the three parameters

a = −5, b = 0 and c = +5 are as follows: (ǫ = 0.1)

µA(x) =





0 ; x ≤ −5

(x+5
5 )− 0.1 ; −5 < x ≤ 0

(5−x
5 )− 0.1 ; 0 ≤ x < 5

0 ; x ≥ 5
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Figure 2.2: Intuitionistic fuzzy triangular function

νA(x) =





0.9 ; x ≤ −5

1− (x+5
5 ) ; −5 < x ≤ 0

1− (5−x
5 ) ; 0 < x ≤ 5

0.9 ; x ≥ 5

The iftrif for the intuitionistic fuzzy set approximately zero degree celsius is

shown in Figure 2.2.

2.3.2 Intuitionistic fuzzy trapezoidal function (iftraf )

Intuitionistic fuzzy trapezoidal function (iftraf), has a flat top and is a trun-

cated triangle. The iftraf function is defined by four parameters, a lower limit

a, an upper limit d, a lower support limit b and an upper support limit c, where

a ≤ b ≤ c ≤ d. Here, a and d locate the feet of the trapezium and b and c locate

the shoulder point. The intuitionistic fuzzy trapezoidal membership function is

defined as follows:
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µA (x) =





0 ; x ≤ a

(x−a
b−a )− ǫ ; a < x < b

1− ǫ ; b ≤ x ≤ c

(d−x
d−c )− ǫ ; c < x < d

0 ; x ≥ d

The corresponding intuitionistic fuzzy trapezoidal non-membership function is

given by

νA (x) =





1− ǫ ; x ≤ a

1− (x−a
b−a ) ; a < x < b

0 ; b ≤ x ≤ c

1− (d−x
d−c ) ; c < x < d

1− ǫ ; x ≥ d

Membership function

Non-membership
function

a b c
0

0.5

1

d

1− ǫ

Figure 2.3: Intuitionistic fuzzy trapezoidal function
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The graph of the intuitionistic fuzzy trapezoidal functions is displayed in Figure

2.3. The intuitionistic fuzzy trapezoidal functions may be symmetric or asym-

metric in shape. The symmetric iftraf function is shown in Figure 2.3. Obviously,

the intuitionistic fuzzy triangular function is a special case of intuitionistic fuzzy

trapezoidal function.

Example 2.3.2. In problems like testing the youthness of the people according to

the age of a person, the trapezoidal membership function may be used. Suppose

A be the set of ages of old men which vary around 55. Assuming that men whose

ages above 65 is treated as very old. In this example, the trapezoidal membership

function is specified by the parameters {a = 50, b = 55, c = 60 and d=65} and the

corresponding membership and non-membership functions are defined as follows:

(ǫ = 0.2)

µA (x) =





0 ; x ≤ 50

(x−50
5 )− 0.2 ; 50 < x < 55

0.8 ; 55 ≤ x ≤ 60

(65−x
5 )− 0.2 ; 60 < x < 65

0 ; x ≥ 65

and

νA (x) =





0.8 ; x ≤ 50

1− (x−50
5 ) ; 50 < x < 55

0 ; 55 ≤ x ≤ 60

1−
(
65−x
5

)
; 60 < x < 65

0.8 ; x ≥ 65
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The intuitionistic fuzzy trapezoidal functions, are categorized into two, namely,

intuitionistic fuzzy R-functions and intuitionistic fuzzy L-functions.

2.3.3 Intuitionistic fuzzy R-functions

An intuitionistic fuzzy R-function is the right intuitionistic fuzzy trapezoidal

function. Intuitionistic fuzzy R-function is specified by two parameters c and d

with a = b = −∞, whose membership functions is defined as follows:

µA(x) =





0 ; x ≥ d

(d−x
d−c )− ǫ ; c < x < d

1− ǫ ; x ≤ c

The corresponding non-membership function takes the form

νA(x) =





1− ǫ ; x ≥ d

1− (d−x
d−c ) ; c < x < d

0 ; x ≥ c

The diagrammatic representation of intuitionistic fuzzy R-function is exhibited

in Figure 2.4.
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Membership function

Non-membership
function

c0

0.5

1

d

1− ǫ

Figure 2.4: Intuitionistic fuzzy R-function

Example 2.3.3. If the parameters of the intuitionistic fuzzy R -function are spec-

ified by the parameters c = 5.6, d = 5.8, then the corresponding membership and

non-membership functions are as follows : (ǫ = 0.2)

µA(x) =





0 ; x ≥ 5.8

(5.8−x
0.2 )− 0.2 ; 5.6 < x < 5.8

0.8 ; x ≤ 5.6

νA(x) =





0.8 ; x ≥ 5.8

1− (5.8−x
0.2 ) ; 5.6 < x < 5.8

0 ; x ≥ 5.6

2.3.4 Intuitionistic fuzzy L-functions

Intuitionistic fuzzy L-function is the left intuitionistic fuzzy trapezoidal func-

tion. Intuitionistic fuzzy L- function is specified by two parameters a and b with
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c = d = +∞, whose membership takes the form

µA(x) =





0 ; x ≤ a

(x−a
b−a )− ǫ ; a < x < b

1− ǫ ; x ≥ b

The corresponding, non-membership function is given as

νA(x) =





1− ǫ ; x ≤ a

1− (x−a
b−a ) ; a < x < b

0 ; x ≥ b

Membership function

Non-membership
function

c
0

0.5

1

d

1− ǫ

Figure 2.5: Intuitionistic fuzzy L-function

The diagrammatic representation of intuitionistic fuzzy L-function is presented

in Figure 2.5.
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2.3.5 Intuitionistic fuzzy Gaussian function (ifgaussf )

Intuitionistic fuzzy Gaussian function ( Ifgaussf) is specified by two parame-

ters. The Gaussian function is defined by a central value m and width k > 0. The

smaller the k, the narrower the curve is. Intuitionistic fuzzy Gaussian membership

and non-membership functions are defined as

µA(x) = exp(−(x−m)2

2(k)2
)− ǫ

νA(x) = 1−
(
exp(−(x−m)2

2(k)2
)

)

Membership function

Non-membership
function

m0

1− ǫ
1

Figure 2.6: Intuitionistic fuzzy Gaussian function

The diagrammatic representation of intuitionistic fuzzy Gaussian function is

shown in Figure 2.6.
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Example 2.3.4. The exponential growth of the bacteria can be expressed by the

intuitionistic fuzzy Gaussian function. If the Gaussian membership function is

determined by the parameters m = 5 and k = 1, then the Gaussian membership

and non-membership functions are as follows (ǫ = 0.01):

µA(x) = exp(− (x−5)2

2 )− 0.01

and

νA(x) = 1−
(
exp(− (x−5)2

2 )
)

Figure 2.7: Intuitionistic fuzzy gaussian function (a) m = 5, k = 1 (b) m = 5,

k = 0.5

The diagrammatic representation of intuitionistic fuzzy Gaussian function for

m = 5, k = 1 and m = 5, k = 0.5 is shown in Figure 2.7(a) and 2.7(b) respectively.
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2.3.6 Intuitionistic fuzzy bell-shaped function (ifbellf )

Intuitionistic fuzzy bell-shaped function is specified by three parameters a, b, c

and usally the parameter b is positive. The parameter c locates the center of the

curve and b control the slopes at the crossover points. The intuitionistic fuzzy

bell-shaped membership and non-membership functions are defined as

µA(x) = 1− ǫ−
(

1

1+|x−c
a |2b

)

and

νA(x) =
1

1+|x−c
a |2b

Membership function

Non-membership
function

a b c0

0.5

1− ǫ1

Figure 2.8: Intuitionistic fuzzy bell-shaped function

As the shape of the membership resembles the bell and that of non-membership

resembles the inverted bell in Figure 2.8, the function is called intuitionistic fuzzy

bell-shaped function.
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2.3.7 Intuitionistic fuzzy sigmoidal function (ifsigf )

Intuitionistic fuzzy sigmoidal function depends on two parameters a and c,

where c locates the distance from the origin and a determines the steepness of

the function. Depending on the sign of the parameter a, the intuitionistic fuzzy

sigmoidal membership function is inherently open to the right or to the left. If a

is positive, the function is open to the right, whereas if it is negative it is open to

the left. As the parameter increases, the transition from 0 to 1 becomes sharper.

Membership function

Non-membership
function

a c
0

0.5

1− ǫ
1

Figure 2.9: Intuitionistic fuzzy Sigmoidal function

The intuitionistic fuzzy sigmoidal membership and non-membership functions

are defined as

µA(x) =
(

1
1+exp(−a(x−c))

)
− ǫ
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and

νA(x) = 1− 1
1+exp(−a(x−c))

In Figure 2.9, the intuitionistic fuzzy sigmoidal function is open to the right.

Intuitionistic fuzzy sigmoidal function is commonly used as an activation function

in neural networks.

2.3.8 Intuitionistic fuzzy S-shaped function (ifSf )

The precise appearance of ifSf is determined by the choice of the parameters

a, b and the parameters locate the extremes of the sloped portion of the curve.

Intuitionistic fuzzy S-shaped membership function takes the form

µA (x) =





0 ; x ≤ a

2(x−a
b−a )

2 − ǫ ; a < x ≤ a+b
2

1− 2(x−b
b−a )

2 − ǫ ; a+b
2 ≤ x < b

1− ǫ ; x ≥ b

Similarly, intuitionistic fuzzy S-shaped non-membership function is given by

νA (x) =





1− ǫ ; x ≤ a

1− 2(x−a
b−a )

2 ; a < x ≤ a+b
2

2(x−b
b−a )

2 ; a+b
2 ≤ x < b

0 ; x ≥ b
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Figure 2.10: Intuitionistic fuzzy S-shaped function

The graphical representation of intuitionistic fuzzy S-shaped function is de-

picted in Figure 2.10.

Example 2.3.5. If the two parameters of the intuitionistic fuzzy S-shaped func-

tion are given to be a = 5.1 and b = 5.5, then the corresponding membership and

non-membership functions are as follows (ǫ = 0.1):

µA (x) =





0 ; x ≤ 5.1

2(x−5.1
0.4 )2 − 0.1 ; 5.1 < x ≤ 5.3

1− 2(x−5.5
0.4 )2 − 0.1 ; 5.3 ≤ x < 5.5

0.9 ; x ≥ 5.5

and

νA (x) =





0.9 ; x ≤ 5.1

1− 2(x−5.1
0.4 )2 ; 5.1 < x ≤ 5.3

2(x−5.5
0.4 )2 ; 5.3 ≤ x < 5.5

0 ; x ≥ 5.5
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2.3.9 Intuitionistic fuzzy Z-shaped function (ifZf )

The ifZf, is given by two parameters, a and b which locate the extremes of the

sloped portion of the curve.

Intuitionistic fuzzy Z-shaped membership function is defined as

µA (x) =





1− ǫ ; x ≤ a

1− 2(x−a
b−a )

2 − ǫ ; a < x ≤ a+b
2

2(x−b
b−a )

2 − ǫ ; a+b
2 ≤ x < b

0 ; x ≥ b

The corresponding intuitionistic fuzzy Z-shaped non-membership function takes

the form

νA (x) =





0 ; x ≤ a

2(x−a
b−a )

2 ; a < x < a+b
2

1− 2(x−a
b−a )

2 ; a+b
2 ≤ x < b

1− ǫ ; x ≥ b
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Figure 2.11: Intuitionistic fuzzy Z-shaped function

The diagrammatic representation of intuitionistic fuzzy Z-shaped function is

shown in Figure 2.11.

Example 2.3.6. If the two parameters of the intuitionistic fuzzy Z-shaped func-

tion are given to be a = 5.1 and b = 5.5, then the corresponding membership and

non-membership functions are as follows (ǫ = 0.1):

µA (x) =





0.9 ; x ≤ 5.1

1− 2(x−5.1
0.4 )2 − 0.1 ; 5.1 < x ≤ 5.5

2(x−5.5
0.4 )2 − 0.1 ; 5.3 ≤ x < 5.5

0 ; x ≥ 5.5

and

νA (x) =





0 ; x ≤ 5.1

2(x−5.1
0.4 )2 ; 5.1 < x ≤ 5.3

1− 2(x−5.5
0.4 )2 ; 5.3 ≤ x < 5.5

0.9 ; x ≥ 5.5
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2.4 Defuzzification of intuitionistic fuzzy sets

Defuzzification is the process of converting a fuzzy quantity to precise quan-

tity, just as fuzzification is the conversion of a precise quantity to a fuzzy quan-

tity. As output of any mathematical model must be crisp, it is necessary to

convert the modified intuitionistic fuzzy values into crisp, which is termed as

IF-defuzzification. Various types of defuzzification methods are available for con-

verting fuzzy to non-fuzzy. In this section, intuitionistic defuzzification functions

such as triangular, trapezoidal, L-trapezoidal, R-trapezoidal, gaussian, S-shaped,

Z-shaped functions are defined.

Definition 2.4.1. [9]

Let the universal set X be fixed and A be an IFS, then modal operator ⊞ is

defined as

⊞A =
{
〈x, µA(x)

2 ,
γA(x)+1

2 〉 : x ∈ X
}

Definition 2.4.2. [9]

Let the universal set X be fixed and A be an IFS, then modal operator ⊠ is

defined as

⊠A =
{
〈x, µA(x)+1

2 ,
γA(x)

2 〉 : x ∈ X
}

2.4.1 Intuitionistic fuzzy-defuzzification functions

hspace0.5cm Intuitionistic fuzzy (IF)-defuzzification functions are used to con-

vert membership and non-membership values into precise quantity. The term
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IF-defuzzification function (IFDF) refers to defuzzification function of an IFS.

This section defines and discusses few IF defuzzification functions and suitable

examples.

2.4.2 Intuitionistic fuzzy triangular defuzzification func-

tion (iftridf)

IF-triangular defuzzification function (iftridf) is given by,

C(y) =





≤ a if y = 0

a+ (b− a)(y + ǫ)− (
√
µ ∗ (c1 − ν)) if 0 < y ≤ x−a

b−a − ǫ

(b− a)(y + ǫ) + c−
√
µ ∗ (c2 − ν) if x−a

b−a − ǫ ≤ y < c−x
c−b − ǫ

≥ c if y = 0

where c1 and c2 are arbitrary constants and y = µA(x) is the fuzzified value

which lies in [0, 1] and ǫ is a small quantity such that µA(x) + νA(x) + ǫ = 1 and

0 < ǫ < 1.

Note

Hereafter, ǫ is a small quantity chosen in such a way that µA(x) + νA(x) + ǫ = 1

and 0 < ǫ < 1.
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2.4.3 Intuitionistic fuzzy trapezoidal defuzzification func-

tion (iftradf)

IF-trapezoidal defuzzification function (iftradf) is given by

C(y) =





≤ a if y = 0

a+ (b− a)(y + ǫ)− (
√
µ ∗ (c1 − ν)) if 0 < y ≤ x−a

b−a − ǫ

b ≤ x ≤ c if y = 1− ǫ

(c− d)(y + ǫ) + d−
√
µ ∗ (c2 − ν) if 1− ǫ < y < d−x

d−c − ǫ

≥ d if y = 0

where c1 and c2 are arbitrary constants.

Intuitionistic fuzzy R-trapezoidal defuzzification function (ifrtdf )

The IF-R-trapezoidal defuzzification function (ifrtdf) is given by

C(y) =





≤ c if y = 1− ǫ

(c− d)(y + ǫ) + d−
√
µ ∗ (c1 − ν) if 1− ǫ < y < d−x

d−c − ǫ

≥ d if y = 0

where c1 is an arbitrary constant.
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Intuitionistic fuzzy L-trapezoidal defuzzification function (ifltdf )

IF-L-trapezoidal defuzzification function (ifltdf) takes the form

C(y) =





≤ a if y = 0

a+ (b− a)(y + ǫ)−
√
µ ∗ (c2 − ν) if 0 < y ≤ x−a

b−a − ǫ

≥ b if y ≥ 1− ǫ

where c2 is an arbitrary constant.

2.4.4 Intuitionistic fuzzy Gaussian defuzzification functions

(ifgaussdf )

IF Gaussian defuzzification functions (ifgaussdf) are defined as

C(y) =





m− k
√

2(log(y + ǫ))−√
µ ∗ c1 ∗ γ if x ≤ m

m+ k
√

2(log(y + ǫ)) +
√
µ ∗ c2 ∗ γ if x > m

where c1 and c2 are arbitrary constants.
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2.4.5 Intuitionistic fuzzy S-shaped defuzzification function

(ifSdf )

IF-S-shaped defuzzification function (ifSdf) takes the form

C(y) =





≤ a if y = 0

a+
(b−a)

√
y+ǫ√

2
+ (µ ∗ (c1 − ν))2 if 0 < y ≤ 2(x−a

b−a )
2 − ǫ

b− (b−a)
√

1−(y+ǫ)√
2

− (µ ∗ c2 ∗ ν)2 if 2(x−a
b−a )

2 − ǫ ≤ y < 1− 2(x−b
b−a )

2 − ǫ

≥ b if y ≥ 1− ǫ

where c1 and c2 are arbitrary constants.

2.4.6 Intuitionistic fuzzy Z-shaped defuzzification function

(ifZdf )

IF-Z-shaped defuzzification function (ifZdf) is defined as

C(y) =





≤ a if y = 1− ǫ

a+
(b−a)

√
1−(y+ǫ)√
2

+ (µ ∗ c1 ∗ ν)2 if 0 < y ≤ 1− 2(x−a
b−a )

2 − ǫ

b− (b−a)
√
y+ǫ√

2
− (µ ∗ (c2 − ν))2 if 1− 2(x−a

b−a )
2 − ǫ ≤ y < 2(x−b

b−a )
2 − ǫ

≥ b if y = 0

where c1 and c2 are arbitrary constants.
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2.5 Numerical Examples

Example 2.5.1. In this example, IF-triangular fuzzification function is used for

fuzzification and iftridf is used for defuzzification processes. The other defuzzifi-

cation functions can also be verified in a similar way. Consider a 3×3 grey matrix

extracted from an image whose grey values vary from 0 to 255. The parameters

are a = 0, b = 128, c = 256 and ǫ = 0.001. This example is done only to check

the validity of the proposed intuitionistic defuzzification functions.

A =




50 128 192

202 220 166

256 32 64




(2.1)

From Definition 2.3.1 of iftrif, IF-triangular fuzzified 3× 3 matrix is given by

[〈µA(x), νA(x)〉] =




〈0.3896, 0.6094〉 〈0.9990, 0〉 〈0.4990, 0.5000〉

〈0.4206, 0.5781〉 〈0.2803, 0.7188〉 〈0.7021, 0.2969〉

〈0, 0, 9990〉 〈0.2490, 0.7500〉 〈0.4990, 0.5000〉




(2.2)

The corresponding IF-triangular defuzzified matrix is obtained as follows

A =




49.6099 127.0005 191.1348

201.2231 219.7128 164.9096

256 31.7505 63.5005




(2.3)

Here, no modification is carried out in the input. After IF triangular fuzzification

(iftrif) and IF triangular defuzzification process (iftridf) the output remains the
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same. Comparing (2.1) and (2.3), the loss of accuracy is mainly due to numerical

approximation.

Example 2.5.2. Intuitionistic fuzzification, modification of membership and non-

membership values and intuitionistic defuzzification are the three major steps in-

volved in modeling real situations via IFSs. IF logic controller models human

experience, human decision making behaviour and so on. In intuitionistic fuzzy

inference system, modification is required so that result is more suitable than orig-

inal for perception. In this example, intuitionistic fuzzy modal operators ⊞ and

⊠ are used for modification of membership and non-membership values. Consider

the same matrix A as in Example 2.5.1.

Based on the matrix (2.2), the modified matrix using modal operator ⊞, is given

by

[〈
µ

′

A(x), ν
′

A(x)
〉]

3×3
=




〈0.1948, 0.8047〉 〈0.4995, 0.5〉 〈0.2495, 0.75〉

〈0.2103, 0.7890〉 〈0.1401, 0.8594〉 〈0.3510, 0.6484〉

〈0, 0.9995〉 〈0.1245, 0.875〉 〈0.2495, 0.75〉




(2.4)

The corresponding defuzzified matrix for (2.4) is as follows

C =




24.8673 63.5642 223.3775

228.4489 237.5394 210.2552

255.872 15.9392 31.8142




(2.5)
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The modified matrix using modal operator ⊠, is given by

[〈
µ

′′

A(x), ν
′′

A(x)
〉]

3×3
=




〈0.6948, 0.3047〉 〈0.9995, 0〉 〈0.7495, 0.25〉

〈0.7103, 0.2890〉 〈0.6401, 0.3594〉 〈0.8510, 0.1484〉

〈0.5, 0.5〉 〈0.6245, 0.375〉 〈0.7495, 0.25〉




(2.6)

The corresponding defuzzified matrix for (2.6) is as follows:

C =




88.3673 127.0642 159.1862

90.3357 172.9144 145.6887

191.005 79.2887 95.3142




(2.7)

Comparing (2.5) and (2.7), it is inferred after applying ⊞ modal operator, that

they can be used for enhancement. Moreover, low intensity grey levels are further

decrease and high intensity gray levels are further increased. The modal operator

⊠ increases the low and decreases the high. These tools find applications in image

processing.
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Chapter 3

Intuitionistic fuzzy logic

controller

3.1 Introduction

In this chapter, an architecture of intuitionistic fuzzy logic controller (IFLC) is

designed so that it can be used for any controlling system. As designing of a

common IFLC is not found anywhere in the literature, it is therefore necessary to

design IFLC as a tool. Further, new intuitionistic fuzzy operators are defined and

applied in intuitionistic fuzzy inference engine to establish a flexible mathematical

framework to model the vagueness, which will find applications in noise removal

in image processing. Finally, the validity of the controller is verified with suitable

illustrations.

3.2 Architecture of an intuitionistic fuzzy logic controller

The basic structure of an IFLC is shown in Figure 3.1. The controller includes

the following components.
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Intuitionistic fuzzy set theory

Crisp Intuitionistic Intuitionistic fuzzy Intuitionistic Crisp

(IF logic, rules, operators)

Input fuzzification
interface

inference engine defuzzification
function Output

Figure 3.1: Block diagram of an intuitionistic fuzzy logic controller

1. Intuitionistic fuzzifier

Intuitionistic fuzzification transforms input crisp values into intuitionistic

fuzzy values. Nine types of intutionistic fuzzification functions are defined

on the basis of different shapes of the membership and non-membership

functions. Appropriate intuitionistic fuzzy membership function can be se-

lected for intuitionistic fuzzification.

2. Intuitionistic fuzzy inference engine

Intuitionistic fuzzy inference engine is composed of intuitionistic fuzzy IF-

THEN rules, intuitionistic fuzzy logic, intuitionistic fuzzy operators etc.

These elements are used for modification of intuitionistic fuzzy pairs as re-

quired.

3. Intuitionistic defuzzifier

As output of any mathematical model must be crisp, it is applicable for IFLC
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also. Hence, it is necessary to convert the modified intuitionistic fuzzy val-

ues into crisp, which is termed as intutionistic defuzzification. Various types

of intutionistic defuzzification functions such as triangular, trapezoidal, L-

trapezoidal, R- trapezoidal, S-shaped, Z-shaped functions are defined. Suit-

able intuitionistic fuzzy defuzzification function for a specified need can be

selected for defuzzification.

Remarks

1. If any of the defined intuitionistic fuzzification functions is not found suitable

for the specific problem, the user can define a required function, based on

the requirement.

2. Unlike defuzzification to single value in fuzzy controller, intuitionistic de-

fuzzification gives a matrix of defuzzified values in [0,1], which is more suit-

able for designing IFLC in image processing.

3.3 An example in image processing

Image Processing is a form of information processing for which the in-

put is an image, such as a photograph or video frame, the output may be either

an image or a set of characteristics related to the image where, an image is de-

fined as an array, or a matrix, square pixel arranged in rows and columns [84].

Most image processing techniques involve treating the image as a two-dimensional

representation and applying standard processing techniques to it.

Noise is an unwanted effect in an image which degrades the image to differ-
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ent extend during image acquistion or transmission [84]. A noisy image can be

modeled as

C(X, Y ) = A(X, Y ) +B(X, Y )

where A(X, Y ) is the original image, B(X, Y ) is the noise in the image and

C(X, Y ) is the resulting noisy image. Common types of noise in images are im-

pulse noise and random noise. Salt and pepper noise is a special case of impulse

noise.

Consider a greyscale image ′x′ defined as m × n matrix , where x(i, j) repre-

sents the intensity of the pixel at the ith row and the jth column. The intensity is

stored in an 8-bit integer, giving 256 possible grey levels in the interval [0, 255].

In this interval, a salt and pepper noise takes minimum and maximum intensity

and appears in digital image with equal probabilities. The noise can be positive

or negative. Positive impulse appears as white (salt) points with intensity 255

and negative impulse appears as black (pepper) points with intensity 0.

Notations

Let A = (A1, A2, · · ·An) be a sample of n intuitionistic fuzzy data, shortly

IFSp -A, let E be a fixed non-empty set. Let 〈µAi
(x), νAi

(x)〉, i = 1, 2, · · ·n be

the membership and non-membership values of x in A.

Definition 3.3.1.

The mean of IFSp -A, denoted by IFĀ, is defined as

IFĀ =





〈
x,

n∑
i=1

µAi(x)

n ,

n∑
i=1

νAi(x)

n

〉
: x ∈ E




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Definition 3.3.2.

The median of an IFSp -A, denoted by IFmed(A), defined as

IFmed(A) = {〈x,med(µAi
(x),med(νAi

(x))〉 : x ∈ E}

Definition 3.3.3. [75]

Let A be an IFS in E, then its Normalization denoted by Nor(A), is defined as

Nor(A) =
{〈
x, µNor(A)(x), νNor(A)(y)

〉
: x ∈ E

}

where µNor(A)(x) =
µA(x)

sup(µA(x))
and νNor(A)(x) =

νA(x)−inf(νA(x))
1−inf(νA(x))

Definition 3.3.4. [75]

The following are the steps to calculate the mode of an IFSp -A

Step 1. Normalize the data using

µNor(Ai)(x) =
µAi(x)

sup(µAi(x))
, νNor(Ai)(x) =

νAi(x)
sup(νAi(x))

Step 2. Choosing minimum of normalized membership values and maximum of

non-membership values for the IF mode denoted by IFmode(A).

Definition 3.3.5.

The maximum of an IFSp -A, denoted by IFmax(A), defined as

IFmax(A) =

{〈x,max(µA1
(x), µA2

(x), · · ·µAn
(x)),min(νA1

(x), νA2
(x), · · · νAn

(x))〉 : x ∈ E}
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Definition 3.3.6.

The minimum of an IFSp -A, denoted by IFmin(A), defined as

IFmin(A) = {〈x,min(µA1
(x), µA2

(x), · · ·µAn
(x)),max(νA1

(x), νA2
(x), · · · νAn

(x))〉 : x ∈ E}

3.4 Proposed algorithm

Digital images are often corrupted by different kinds of noise due to errors

that occur in the process of transmission in the communication channels and need

to be processed to improve their pictorial information for better visual interpre-

tation. In order to get a noise free image, several linear and non-linear filtering

techniques are used [84].

Filters increase the brightness and contrast and add wide variety of special ef-

fects to an image. There are many types of filters and among them mean, median,

mode play an important role in filtering. In recent years, many fuzzy filters have

been designed to provide better results than traditional filters.

Information on grey level of images are always not of certain nature. In such

situation, fuzzy logic is used to process imperfect data which arises due to vague-

ness and ambiquity. Inspite of vast applications, FSs are not always able to model

uncertainties associated with imperfect information. This is due to the fact that

their membership functions are themselves crisp. Data given as inputs to an fuzzy

logic system and data used for tuning, are often noisy, thus bearing an amount of

uncertainty.

IFSs provide an intuitive framework to deal vagueness from imprecise informa-

tion by taking in to account non-membership values in addition to membership

51



values. IFLC for noisy images is designed using intuitionistic fuzzy filters applied

in inference engine and the proposed technique removes or effectively suppresses

the noise in the image and enhances the image quality without any loss of edge

information. Four different filtering techniques namely intuitionistic fuzzy (IF)

mean, IF median, IF max, IF min filters are defined and their filtering perfor-

mance on impulse noise is presented. The performance of the proposed method

is evaluated in MATLAB simulations for an image that has been subjected to

various degrees of corruption with impulse noise. The results demonstrate the

effectiveness of the algorithm.

In this section, IF filtering algorithm is designed for noise reduction and im-

age enhancement. The proposed technique removes the noise and improves image

quality without any loss of information and following are the steps listed to develop

the proposed model:

• Read the noisy image and obtain the grey level matrix.

• Choose a = minimum grey level and b = maximum grey level.

• Define the membership function

µA (x) =





0 ; x ≤ a

2(x−a
b−a )

2 − ǫ ; a < x ≤ a+b
2

1− 2(x−b
b−a )

2 − ǫ ; a+b
2 ≤ x < b

1− ǫ ; x ≥ b

where x is the grey level of the pixel which is to be fuzzified.

• Calculate the non-membership values in terms of membership values.
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νA (x) =





1− ǫ ; x ≤ a

1− 2(x−a
b−a )

2 ; a < x ≤ a+b
2

2(x−b
b−a )

2 ; a+b
2 ≤ x < b

0 ; x ≥ b

such that 0 ≤ µA(x) + νA(x) + ǫ ≤ 1.

• Modify membership and non-membership values 〈µ′

mn, ν
′

mn〉 using any one

of the intuitionistic fuzzy filters namely IF mean, IF maximum, IF minimum,

IF median [using Definitions 3.2.1, 3.2.5, 3.2.6, 3.2.2] respectively.

• Calculate the new grey level using the modified membership and non-membership

values.

g
′

A =





a+
(b−a)

√
y+ǫ√

2
+ (µ ∗ (C1 ∗ ν))2 ; 0 ≤ y ≤ 2(x−a

b−a )
2 − ǫ

b− (b−a)
√
y+ǫ√

2
− (µ ∗ (C2 ∗ ν))2 ; 1− 2(x−b

b−a )
2 − ǫ ≤ y < 2(x−a

b−a )
2 − ǫ

where C1 and C2 are arbitrary constants.

• Display noise-free output image.

3.5 Results and Discussion

Intuitionistic fuzzy statistical tools find better performance to handle impre-

cision in grey distribution. Experimental analysis is performed in two different

ways. (i) Based on the image performance. (ii) Based on the statistical measures

(Peak to signal noise ratio (PSNR)).

To illustrate, a grey scale lena image of size 256 ×256 with 8 bits per pixel

tone resolution with 20% of salt and pepper noise is considered for analysis. IF
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filter of window size 3×3 is applied. grey value of the image, membership and

non-membership values of the distored image and restored image are shown in

Example 3.4.1, which interprets IF median filter perform better for elimination of

salt and pepper noise. In the proposed system, non-membership values have also

been included which makes difference in the output.

Example 3.5.1. For illustrative purpose, a particular part of the image is ex-

tracted and used for analysis.

Step(i): Original grey level of the given image are converted into double type.

0.623529 0.639215 0.643137

0.631372 0.639215 0.639215

0.639215 0.635294 0.635294

0.6431372 0.639215 0.631372

0.647058 0.639215 0.635294

0.631372 0.631372 0.627450

0.615686 0.623529 0.623529

0.615686 0.627450 0.631372

0.615686 0.619607 0

0.623529 0.623529 0.627450

Step(ii): Choose a = 0 and b = 0.647058.

Step(iii): The intuitionistically fuzzified values of the grey level are displayed as

below:

Array-membership values Array-non-membership values
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0.716439 0.739569 0.745197 0.283460 0.260330 0.254702

0.728127 0.739569 0.739569 0.271772 0.260330 0.260330

0.739569 0.733879 0.733879 0.260330 0.266020 0.266020

0.745197 0.739569 0.728127 0.254702 0.260330 0.271772

0.750765 0.739569 0.733879 0.249134 0.260330 0.266020

0.728127 0.728127 0.722314 0.271772 0.271772 0.277585

0.704505 0.716439 0.716439 0.295394 0.283460 0.283460

0.704505 0.722314 0.728127 0.295394 0.277585 0.271772

0.704505 0.710503 0 0.295394 0.289396 0.999900

0.716439 0.716439 0.722314 0.283460 0.283460 0.277585

Step(iv): The modified membership and non-membership values using IF median

filter are calculated and tabulated as follows:

Modified membership values Modified non-membership values

0.716439 0.739569 0.739569 0.283460 0.260330 0.260330

0.728127 0.739569 0.739569 0.271772 0.260330 0.260330

0.733879 0.739569 0.739569 0.266020 0.260330 0.260330

0.739569 0.739569 0.733879 0.260330 0.260330 0.266020

0.728127 0.733879 0.733879 0.271772 0.266020 0.266020

0.716439 0.728127 0.728127 0.283460 0.271772 0.271772

0.704505 0.722314 0.722314 0.295394 0.277585 0.277585

0.704505 0.710503 0.716439 0.295394 0.289396 0.283460

0.704505 0.716439 0.722314 0.295394 0.283460 0.277585

0.710503 0.716439 0.716439 0.289396 0.283460 0.283460
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Step(v): Intuitionistic defuzzification is done as shown below.

Newly generated grey level pixel values of class type double

0.582287 0.602146 0.602146

0.592214 0.602146 0.602146

0.597180 0.602146 0.602146

0.602146 0.602146 0.597180

0.592214 0.597180 0.597180

0.582287 0.592214 0.592214

0.572377 0.587249 0.587249

0.572377 0.577329 0.582287

0.572377 0.582287 0.587249

0.577329 0.582287 0.582287

New grey level values generated in step (v) gives the restored image. Hence, it

is inferred that noisy white regions are suppressed by the proposed method and

filtered image is obtained.

Figure 3.2: Final image obtained after IF median filtering. Figure (a) Input image,

(b) Salt and pepper noisy image, (c) Restored image (IF median filtered)
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The original lena image and salt and pepper noisy image are exhibited in

Figure 3.2(a), Figure 3.2(b) and corresponding restored image (IF median filtered)

is shown in Figure 3.2(c).

Example 3.5.2. In order to compare the performance of traditional, fuzzy and

intuitionistic fuzzy filters, a standard cameraman image of size 256 × 256 with

salt and pepper noise is taken for analysis as shown in Figure 3.3.

Figure 3.3: (a) Input image, (b) Salt and pepper noisy image.

The results of denoising using traditional, fuzzy and intuitionistic fuzzy fil-

ters are displayed in Figure 3.5 (p.59) in which first column refers to traditional

filtered image, second and third column refers to fuzzy and intuitionistic fuzzy fil-

tered images respectively. In order to remove impulse noise, several intuitionistic

fuzzy filtering techniques are employed. Four different filtering techniques namely

intuitionistic fuzzy (IF) mean, IF median, IF max and IF min filters are applied

and their filtering performance on impulse noise is presented.
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It is inferred that from Figure 3.5, traditional filters often tend to blur sharp

edges, and affect the edge details. They remove smaller percent of noise and per-

formance is slow in presence of high noise. Fuzzy based filtering approach perform

better noise removal and have great deal with low level noise to high level noise

corrupted in the images. In addition, intuitionistic fuzzy filters perform better

than fuzzy by giving stability in accuracy.

3.6 Performance Analysis

IF filtering algorithm is employed to reduce noise in images and to enhance the

image quality. Experimental results indicate that the proposed method performs

significantly better in preserving image details and also preserving image edge

information and achieves better results when applied to images corrupted by im-

pulse noise (salt and pepper).

Performance of the filters are tested at different level of noise densities on the

basis of PSNR values [50]. PSNR is usually expressed in terms of the logarithmic

decibel (dB) scale.

Restored image performance is quantified using PSNR as defined below:

PSNR = 10log10
2552

1
mn

∑
i,j

(ri,j − xi,j)2
(3.1)

where r - original image, x - restored image and mn - size of the image.

Comparison on the performance of proposed method to existing methods for

median filter is shown in Table 3.1.
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Type of filter Salt and pepper noise densities

20 % 30 % 50 % 80 %

Adaptive median 35.57 30.72 27.37 22.39

Standard median 41.59 33.75 26.43 14.57

Fuzzy median 53.28 37.38 33.65 27.71

IF median 68.96 59.58 56.98 52.23

Table 3.1: Performance comparison of proposed method to existing methods for

median filter

The noise density levels vary from 20% to 80% and the performance are quanti-

tatively measured by PSNR. For 20% noise level, PSNR value for adaptive median

filter is 35.57, for standard median and fuzzy median filter, PSNR values are 41.59

and 53.28 respectively. Here, IF median value is 68.96. Similarly, for other noise

density levels, the PSNR value of IF median is higher than other filters. The

higher values of PSNR infer that proposed median filter is in acceptable ratio.

Hence, from Table 3.1, it is obvious that IF median filter performs better.

The graphical representation of PSNR Vs Noise densities (in %) is shown in

Figure 3.4. Comparison on the performance of traditional median, fuzzy median

and intuitionistic fuzzy median are plotted in the graph. The noise levels vary

from 20% to 80% and the corresponding PSNR values vary from 14 to 69 dB.

From Figure 3.4, it is inferred that for 20% noise level, PSNR value for standard

median is 41.59 and for fuzzy median and IF median filter, it is 53.28 and 68.96

respectively.

It is observed that, increase in noise level results more stability in accuracy,

comparing with other existing filtering techniques. It is evident from the graph

that, the proposed IF median filter stands top in removing the noise and preserves
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Figure 3.4: Graphical representation of PSNR Vs Noise densities (in %)

the image details.
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Figure 3.5: Comparison of filters (a) traditional, (b) fuzzy and (c) intuitionistic

fuzzy filters.
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Chapter 4

Intuitionistic fuzzy statistical

tools

4.1 Introduction

In this chapter, an attempt has been made to define intuitionistic fuzzy ran-

dom variable (IFRV) and to study some of its properties. Also, characteristics of

intuitionistic fuzzy random variable like expectation, variance and moments are

described. Intuitionistic fuzzy number defined as a generalization of Wu’s fuzzy

number, can be viewed as an alternative approach to model reality with uncer-

tainty for solving problems in IF system and can be applied to many practical

problems arising on economical, social survey, pollution control.

Computation of information based on IF statistics is more futuristic and are

widely used in decision making. Hence, the authors are motivated to design IF

statistical tools and these new techniques can extract people’s thought in a more

precise way. In addition, IF statistical tools are used to design intuitionistic fuzzy

filtering algorithm. The validity of the proposed algorithm, is verified with suit-
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able examples.

4.2 Preliminaries

In this section, some basic definitions that are necessary to the study are given.

Definition 4.2.1.

Let U be the universal set and let A = {A1, A2, · · · , An} be the subset of

discussion factors in U , then for any x ∈ U , its degrees of membership and non-

membership corresponding to {A1, A2, · · · , An} are respectively {µ1(x), · · · , µn(x)}

and {ν1(x), ν2(x), · · · , νn(x)} where µ : U → [0, 1] and ν : U → [0, 1] are real, then

the intuitionistic fuzzy number is an object of the form {〈x, µU (x), νU (x)〉 : x ∈ U}

and can be written as

µU (x) =
µ1(x)
A1

+
µ2(x)
A2

+ · · ·+ µn(x)
An

,

νU (x) =
ν1(x)
A1

+
ν2(x)
A2

+, · · ·+ νn(x)
An

where “+” stands for “or” and “ ÷ ” stands for the membership µi(x) on Ai. It

can also be written as Ai(µ, ν) =
〈µ1(x),ν1(x)〉

A1
+

〈µ2(x),ν2(x)〉
A2

+ · · ·+ 〈µn(x),νn(x)〉
An

Example 4.2.1. A survey about favourite subjects using IFN:

Consider an intuitionistic fuzzy set of like subjects S1, S2, S3, S4 and S5 of a person

as shown in Table 4.1. When the degree is given as 1 or 0 , that is like or dislike,

a standard Yes or No are in complementary relationship as in binary logic.

Let A1 represents like subjects, A2 represents dislike subjects. A1(µ, ν) denotes

IF response of like subjects. A2(µ, ν) denotes IF response of dislike subjects. The

intuitionistic fuzzy number of these two statements can be represented as
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Like Subjects IF Perception Binary Perception

A1(µ, ν) A2(µ, ν) A1 = like A2 = dislike

Mathematical Science (S1) 〈0.1, 0.8〉 〈0.8, 0.1〉 Yes

Physical Science (S2) 〈0.5, 0.2〉 〈0.1, 0.4〉 No

Social Science (S3) 〈0.6, 0.3〉 〈0.2, 0.6〉 Yes

Biological Science (S4) 〈0.8, 0.1〉 〈0.2, 0.4〉 Yes

Life Science (S5) 〈0.2, 0.6〉 〈0.6, 0.3〉 No

Table 4.1: Comparison of IF perception and Binary perception on favourite subjects

A1(µ, ν) =
〈0.1,0.8〉

S1
+

〈0.5,0.2〉
S2

+
〈0.6,0.3〉

S3
+

〈0.8,0.1〉
S4

+
〈0.2,0.6〉

S5

A2(µ, ν) =
〈0.8,0.1〉

S1
+

〈0.1,0.4〉
S2

+
〈0.2,0.6〉

S3
+

〈0.2,0.4〉
S4

+
〈0.6,0.3〉

S5

If someone uses membership and non-membership functions to express their degree

of feeling based on human perception, the result will be very closer to the human

thought. IFN gives a better representation of favoritism of subjects of a person

by giving the degree of belongingness or non belongingness instead of Yes or No

answer.

Definition 4.2.2. [9]

Let A(µ, ν) be an IFN. Then S(A) = µ − ν is called as the score of A where

S(A) ∈ [−1, 1].
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Definition 4.2.3. [9]

Let A(µ, ν) be an IFN. Then L(A) = µ+ ν be the accuracy of A where L(A) ∈

[0, 1].

Note

Let A and B be any two IFNs. According to their scores and accuracies, the

ranking order [57] of A and B is stipulated as follows:

(i) If S(A) > S(B), then A is greater than B, denoted by A ≻ B.

(ii) If S(A) < S(B), then A is smaller than B, denoted by A ≺ B.

(iii) If S(A) = S(B), then there arises three situations:

(a) If L(A) = L(B), then A is equal to B, denoted by A = B.

(b) If L(A) > L(B), then A is greater than B, denoted by A ≻ B.

(c) If L(A) < L(B), then A is smaller than B, denoted by A ≺ B.

Note

Let A = ([a, b], [c, d]), denote an interval valued intuitionistic fuzzy number (IV-

IFN).

Definition 4.2.4. [44]

Let Ai = ([ai, bi], [ci, di]) be an IVIFN, accuracy function L of Ai is defined as

L(Ai) =
ai+bi−di(1−bi)−ci(1−ai)

2 .

Definition 4.2.5. [44]

Let Ai = ([ai, bi], [ci, di]) be an IVIFN. The following are the steps involved in

ranking interval-valued intuitionistic fuzzy numbers.

Step 1: Find the score function of Ai using L(Ai) =
ai+bi−di(1−bi)−ci(1−ai)

2 .
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Step 2: Calculate BAi(xi,xj) = {ai ∈ Ai/xi > xj},

CAi(xi,xj) = {ai ∈ Ai/xi = xj} and fuzzy dominance relation using the formula

RAi(xi,xj) =

∣∣∣BAi(xi,xj)

∣∣∣+
∣∣∣CAi(xi,xj)

∣∣∣
2|Ai| .

Step 3: Calculate the entire dominance degree using RAi(xi) =
1
|E|

|E|∑
i=1

RAi(xi,xj).

Step 4: Now, the IVIFNs are ranked based on the value of entire dominance

degree.

4.3 Intuitionistic fuzzy random variable

Definition 4.3.1.

Let U be the universal set and let L = {L1, L2, · · · , Lk} be the set of k linguistic

variables. Then an intuitionistic fuzzy random variable X is characterized by the

map X : U → F such that xi ∈ U is associated with an ordered pair in [0, 1]×[0, 1]

of the form F = 〈µij , νij〉, where the function µij : U → [0, 1] and νij : U → [0, 1]

define the degrees of membership and non-membership of xi with respect to Lj ,

such that 0 ≤ µij + νij ≤ 1.

Example 4.3.1. A farmer wants to adapt a new farming style for cultivating a

crop from traditional techniques. He invites 5 experts for evaluation. After they

tested the crop, they are asked to give a IF grading as Very Unsatisfactory = L1,

Unsatisfactory= L2, No difference= L3, Satisfactory= L4, Very Satisfactory= L5.

Table 4.2 shows the evaluation of the 5 experts.
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Expert L1 L2 L3 L4 L5

A 〈0.6, 0.2〉 〈0.5, 0.1〉 − − 〈0.2, 0.6〉

B 〈0.1, 0.6〉 − 〈0.4, 0.1) 〈0.7, 0.2〉 −

C − 〈0.2, 0.6〉 − 〈0.4, 0.3) 〈0.7, 0.2〉

D 〈0.8, 0.1〉 〈0.5, 0.2) − 〈0.2, 0.6〉 −

E 〈0.1, 0.6〉 − − 〈0.7, 0.1〉 〈0.8, 0.2〉

Table 4.2: An example of IFRV

Though, the responses are available, still there remains an uncertainty about

precise meaning of the response. IFRV extends the case to model not only uncer-

tainty but also to model the hesitation which is naturally present in the uncer-

tainty.

4.4 Properties of IFRV

1. Let U be the universal set. Let X1 and X2 be the set of two IFRVs over X,

whereX1 = {〈xi, Lk, µik, νik〉 : xi ∈ X} andX2 =
{〈
xj , Lk, µjk, νjk

〉
: xj ∈ X

}
,

i = 1, 2, ...,m and k = 1, 2, ..., n then

(a) X1 +X2 is an object of the form

X1 +X2 = {〈xi + xj , Lk, µij , νij〉 : xi, xj ∈ X}, where µij = µik(xi) +

µjk(xj)− µik(xi).µjk(xj), νij = νik(xi).νjk(xj) and 0 ≤ µij + νij ≤ 1 is
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also an IFRV.

(b) X1.X2 = {〈xi.xj , Lk, µij , νij〉 : xi, xj ∈ X}, where µij = µik(xi)+µjk(xj)

and νij = νik(xi) + νjk(xj)− νik(xi).νjk(xj) is also an IFRV.

2. IfX is an IFRV and n is a scalar, then nX = {〈x, 1− (1− µik(x))
n, νik(x)

n〉}

is also an IFRV.

3. IfX1 andX2 are IFRVs, thenmax(X1, X2) andmin(X1, X2) are also IFRVs,

where

max(X1, X2) =
{〈
x,max(µik(xi), µjk(xj)),min(νik(xi), νjk(xj))

〉}
and

min(X1, X2) =
{〈
x,min(µik(xi), µjk(xj)),max(νik(xi), νjk(xj))

〉}
.

Definition 4.4.1. [34]

Let X be an intuitionistic fuzzy random variable. Then the function F defined

for all x by P (x) =
∑
xi<x

pi for i = 1, 2, ..., n is called the distribution function of

the IFRV.

Any set of pairs {(12(µA(xi) + 1− νA(xi)).xi, pi), i = 1, 2, ..., n} will be the proba-

bility distribution of an IFRV.

Definition 4.4.2.

Let X be an IFRV over U . Then its expected value is defined as

E(X) =
n∑

i=1

1
2(µA(xi) + 1− νA(xi)).xi.pi
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Remark

E(X2) =
n∑

i=1

1
2(µA(xi) + 1− νA(xi)).x

2
i .pi

Definition 4.4.3.

Let X be an IFRV over U . Then its variance is defined, in the usual way, as

V (X) = E(X2)− (E(X))2.

Example 4.4.1. Let X be an IFRV with the following probability distribution.

Find E(X) and E(X2). Evaluate E(2X + 1)2 and V (2X + 1)2.

x1 x2 x3

X 〈−3, 0.6, 0.3〉 〈6, 0.4, 0.3〉 〈9, 0.7, 0.2〉

P (X) 1
6

1
2

1
3

Here, E(X) = 3.8675, E(X2) = 31.125, V (X) = 16.175

E(2X + 1)2 = 4E(X2) + 4E(X) + 1

Therefore, E(2X + 1)2 = 140.97

V (2X + 1)2 = a2V (X) = 4V (X) = 64.7

Note

1. If X is an IFRV, A is any IF event and a and b are constants, then EA(aX+

b) = aEA(X) + b
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Proof

EA(aX + b) =
∑ µA(x)+1−νA(x)

2 .(ax+ b).p(x)

=
∑ µA(x)+1−νA(x)

2 .ax.p(x) +
µA(x)+1−νA(x)

2 .b.p(x)

EA(aX + b) = aEA(X) + b

2. If b = 0 then EA(aX) = aEA(X)

3. If a = 1, b = −X̄ = −EA(X) then EA(X − X̄) = 0

4. |EA(X)| ≤ EA|X|, provided expectation exists.

5. EA(
1
X ) ≥ 1

EA(X)

6. EA(X
2) ≥ EA(X)2

7. EA(X
1
2 ) ≤ E(X)

1
2

8. E(logX) ≤ logE(X)

Properties of Variance

1. If X is an IFRV, A is any IF event then VA(aX + b) = a2VA(X), where a

and b are constants.

2. When b = 0, VA(aX) = a2VA(X).

Definition 4.4.4.

The rth moment of an IFRV X, denoted by E(Xr), is defined as µ
′

r = E(Xr)

that is, E(Xr) =
n∑

i=1

µA(xi)+1−νA(xi)
2 .xri .pi

when r = 0, µ
′

0 = E(1) = 1

when r = 1, µ
′

1 = E(X) = µ, the mean of the distribution.
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Definition 4.4.5.

If X is an IFRV, then µr = E[(X − c)r] is called the rth central moment about

the mean c where E[(X − c)r] =
n∑

i=1

µA(xi)+1−νA(xi)
2 .(xi − c)r.pi

Definition 4.4.6.

Let X be a discrete IFRV with probability function pi, then the function

Mx(t) = E(etx) is called the moment generating function of X, defined by

Mx(t) =
n∑

i=1

µA(xi)+1−νA(xi)
2 .etxi .pi

Properties of MGF

1. Let X be an IFRV and c be any constant, then Mcx(t) =Mx(ct)

Mcx(t) = Eecxt = Eexct =Mx(ct)

2. Mc+x(t) = ect.Mx(t)

3. If Y = aX + b, then MY (t) = ebt.Mx(at)

Example 4.4.2. Let X be an IFRV. The probability distribution of X is given

as follows. Find the MGF of X and also find the mean and variance.

Values of X 〈0, 0.3, 0.6〉 〈1, 0.7, 0.2〉 〈2, 0.5, 0.2〉

P (x) 1
4

1
2

1
4

etx 1 et e2t
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Mx(t) = E(etx) =
∑

etxi .pi
µA(xi)+1−νA(xi)

2

Mx(t) =
1
4(0.35 + 2.et × 0.75 + 0.65.e2t)

M
′

x(t) =
1
2(0.75e

t + 0.65e2t)

µ
′

1 =M
′

x(0) =
1
2(0.75 + 0.65) = 0.7

µ
′

2 =M
′′

x (t) =
1
2(0.75e

t + 2e2t × 0.65)

M
′′

x (0) = 1.025

Mean = µ = µ
′

1 = 0.7

V ariance = µ
′

2 − µ
′2

1 = 1.025− 0.72 = 0.535

Therefore, the mean of X values for the given data = 0.7 and the variance is

0.535.

Definition 4.4.7.

If X and Y are two IFRVs, A is any IF event, then Covariance between them

is defined as Cov(X, Y ) = E(XY )− E(X)E(Y )

Note

If X and Y are two independent IFRVs, then E(XY ) = E(X)E(Y ).

Cauchy-Schwartz inequality for IFRV

Theorem

If X and Y are real - valued IFRVs, then [E(XY )]2 ≤ E(X2)E(Y 2)
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Proof

Consider Z(t), a real valued function of a real variable t, defined by Z(t) =

E(X + tY )2.

Z(t) = E(X + tY )2

= E[X2 + 2tXY + t2Y 2]

Z(t) = E(X2)+2tE(XY )+ t2(E(Y 2)) ≥ 0 for all t, which is a quadratic equation

in t of the form ψ(t) = At2 + Bt+ c ≥ 0 for all t.

This implies that graph of the function ψ(t), for positiveX, Y and t, either touches

the t-axis at only one point or not at all. Therefore, if B2 − 4AC > 0, then the

function ψ(t) has two distinct real roots which means, the graph of ψ(t) meets t

axis at two different points which is a contradiction.

Hence, B2 − 4AC ≤ 0.

⇒ 4E(XY )2 − 4E(X2)E(Y 2) ≤ 0

⇒ E(XY )2 ≤ E(X2)E(Y 2)

4.5 Intuitionistic fuzzy statistical tools

Let U be the universal set, L = {L1, L2, · · · , Lk} be a set of k linguistic variables

on U and let X be an intuitionistic fuzzy random variable.

Throughout this section, the notation
〈...,...〉
Lj

is used, it denotes the degrees of

membership and non-membership of the linguistic variable Lj .
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Definition 4.5.1.

The intuitionistic fuzzy mean of X, denoted by IFM , is defined as

IFM =

〈
n∑

i=1
µi1

n
,

n∑

i=1
νi1

n

〉

L1
+

〈
n∑

i=1
µi2

n
,

n∑

i=1
νi2

n

〉

L2
+ · · ·+

〈
n∑

i=1
µik

n
,

n∑

i=1
νik

n

〉

Lk

Note

Since 0 ≤ µij ≤ 1 and 0 ≤ νij ≤ 1 for all i and j, 0 ≤
n∑

i=1

µij

n ≤ 1 and 0 ≤
n∑

i=1

νij

n ≤ 1

and hence

n∑
i=1

µij

n +

n∑
i=1

νij

n ∈ [0, 1]. Hence, IFM is also an IFS.

Example 4.5.1. A manufacturing company is launching new product for the

forthcoming year. The company asked seven experts to give their grading based

on the quality of the product. The quality of the product are classified as E =

Excellent, G = Good, F = Fair, B = Bad, W =Worst. Find the expected value

of the product, based on quality criteria.

Let L = {E,G, F,B,W} be the set of the linguistic variables. Then IF expected

value is given by

IFM =

〈
2.2
5 ,

1.0
5

〉

E
+

〈
1.5
5 ,

1.4
5

〉

G
+

〈
1.5
5 ,

1.3
5

〉

F
+

〈
2.1
5 ,

2.4
5

〉

B
+

〈
2.5
5 ,

1.3
5

〉

W

=
〈0.44, 0.14〉

E
+

〈0.21, 0.2〉
G

+
〈0.21, 0.18〉

F
+

〈0.3, 0.34〉
B

+
〈0.35, 0.18〉

W
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Expert analysis E G F B W

E1 〈0.6, 0.2〉 〈0.4, 0.1〉 〈0.3, 0.3〉 − −

E2 − − 〈0.4, 0.1〉 〈0.6, 0.3〉 〈0.8, 0.1〉

E3 − 〈0, 0.8〉 〈0.1, 0.2〉 〈0.3, 0.2〉 〈0.7, 0.2〉

E4 〈0.1, 0.6〉 − − 〈0.5, 0.2〉 〈0.3, 0.1〉

E5 〈0.8, 0.1〉 〈0.6, 0.3〉 〈0.4, 0.1〉 〈0.1, 0.7〉 −

E6 − − 〈0.3, 0.6〉 〈0.4, 0.3〉 〈0.6, 0.1〉

E7 〈0.7, 0.1〉 〈0.5, 0.2〉 − 〈0.2, 0.7〉 〈0.1, 0.8〉

〈
5∑

i=1

µi1,
5∑

i=1

νi1〉 〈2.2, 1.0〉 〈1.5, 1.4〉 〈1.5, 1.3〉 〈2.1, 2.4〉 〈2.5, 1.3〉

IFM 〈0.44, 0.14〉 〈0.21, 0.2〉 〈0.21, 0.18〉 〈0.3, 0.34〉 〈0.35, 0.18〉

Score function 0.3 0.01 0.03 −0.04 0.17

Table 4.3: Expert analysis on quality

Based on the values of the score function of IFM , it is expected that quality of

the product is Excellent and the company is supposed to continue the production

retaining the same quality.

Definition 4.5.2.

Let X be an intuitionistic fuzzy random variable. Then

(i) intuitionistic fuzzy geometric mean of X, denoted by IFG.M , is defined as

IFG.M =

〈
(

n∏
i=1

µi1)
1
n ,1−(

n∏
i=1

(1−νi1))
1
n

〉

L1
+

〈
(

n∏
i=1

µi2)
1
n ,1−(

n∏
i=1

(1−νi2))
1
n

〉

L2
+

· · ·+

〈
(

n∏
i=1

µik)
1
n ,1−(

n∏
i=1

(1−νik))
1
n

〉

Lk

(ii) intuitionistic fuzzy harmonic mean of X, denoted by IFH.M , is defined as

75



IFH.M =

〈
n

n∑

i=1

1
µi1

,1− n
n∑

i=1

1
1−νi1

〉

L1
+

〈
n

n∑

i=1

1
µi2

,1− n
n∑

i=1

1
1−νi2

〉

L2
+ · · ·+

〈
n

n∑

i=1

1
µik

,1− n
n∑

i=1

1
1−νik

〉

Lk

Example 4.5.2. A production firm wants to launch a new cosmetic item. The

company director asks five experts to grade after introducing the product with the

classification of the profit asHS = Highly Satisfied, S = Satisfied,M =Moderate,

BM = Below Moderate, DS = Dis Satisfied. The opinion of the experts is given

as IF grading. Give your suggestions to the company to launch the new product

based on IF geometric mean and IF harmonic mean.

Here L = {HS, S,M,BM,DS} is the set of linguistic variables.

Expert analysis HS S M BM DS

E1 〈0.8, 0.1〉 〈0.6, 0.2〉 〈0.5, 0.3〉 〈0.2, 0.4〉 〈0.2, 0.7〉

E2 〈0.6, 0.2〉 〈0.5, 0.2〉 〈0.4, 0.3〉 〈0.2, 0.7〉 〈0.1, 0.8〉

E3 〈0.1, 0.8〉 〈0.2, 0.6〉 〈0.4, 0.2〉 〈0.7, 0.2〉 〈0.8, 0.1〉

E4 〈0.2, 0.7〉 〈0.1, 0.6〉 〈0.3, 0.2〉 〈0.5, 0.2〉 〈0.6, 0.3〉

E5 〈0.8, 0.1〉 〈0.5, 0.3〉 〈0.3, 0.3〉 〈0.2, 0.6〉 〈0.1, 0.7〉

IFG.M 〈0.37, 0.5〉 〈0.3, 0.4〉 〈0.37, 0.26〉 〈0.28, 0.45〉 〈0.2, 0.6〉

Score function −0.13 −0.1 0.11 −0.17 −0.4

IFH.M 〈0.26, 0.5〉 〈0.24, 0.4〉 〈0.36, 0.26〉 〈0.27, 0.5〉 〈0.2, 0.6〉

Score function −0.31 −0.2 0.1 −0.23 −0.4

Table 4.4: Opinion of experts on launching new products
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Then IF geometric Mean is

IFG.M =

〈
(0.007)

1
5 ,1−(0.38)

1
5

〉

HS +

〈
(0.003)

1
5 ,1−(0.07)

1
5

〉

S +

〈
(0.007)

1
5 ,1−(0.021)

1
5

〉

M

+

〈
(0.002)

1
5 ,1−(0.04)

1
5

〉

BM +

〈
(0.0009)

1
5 ,1−(0.011)

1
5

〉

DS

=
〈0.37,0.5〉

HS +
〈0.3,0.4〉

S +
〈0.37,0.26〉

M +
〈0.28,0.45〉

BM +
〈0.24,0.45〉

DS

and IF harmonic Mean is

IFH.M =
〈 5
19.1

,1− 5
11.8〉

HS +
〈 5
20.66

,1− 5
8.92〉

S +
〈 5
13.66

,1− 5
6.78〉

M +
〈 5
18.42

,1− 5
10〉

BM

+
〈 5
27.9

,1− 5
14.2〉

DS

=
〈0.26,0.57〉

HS +
〈0.24,0.44〉

S +
〈0.36,0.26〉

M +
〈0.27,0.5〉

BM +
〈0.17,0.64〉

DS

Based on the values of the score function Sj of IFG.M and IFH.M , it is inferred

that after introducing the new product, the company will get a moderate profit.

Hence, it is suggested to launch the new product.

Definition 4.5.3.

Let U be the universal set. LetX be an IFRV on U and let L = {L1, L2, · · · , Lk}

be a set of k linguistic variables. Denote Ij =
n∑

i=1

µij and Jj =
n∑

i=1

νij . Assume that

〈Lj , NIj , NJj〉 denote the normalised sum of membership and non-membership

of Ij and Jj with respect to Lj such that NIj = Ij
supIj

and NJj = Jj

supJj
. Let Sj

be the score function. Then
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(i) intuitionistic fuzzy median of X is defined as the median of Sj .

That is, IFMed = Lj corresponding to median of Sj .

(ii) intuitionistic fuzzy mode of X is defined as the maximum of Sj .

That is, IFMo = Lj corresponding to maximum of Sj .

Example 4.5.3. In a newly started Diet centre, a study was made to analyse the

diets. Five experts are asked to evaluate the nature of diet of a person. The table

below shows the diet analysis by experts. L1 = Very healthy, L2 = Healthy, L3 =

Normal, L4 = Weak, L5 = Poor be the set of linguistic variables. Find the IF

median and IF mode for the diet of a person.

Diet analysis L1 L2 L3 L4 L5

D1 〈0.8, 0.1〉 〈0.7, 0.3〉 − 〈0.1, 0.7〉 −

D2 − − 〈0.4, 0.2〉 〈0.6, 0.1〉 〈0.8, 0.1〉

D3 〈0.7, 0.2〉 〈0.6, 0.1〉 〈0.3, 0.1〉 〈0.2, 0.7〉 −

D4 〈0.6, 0.2〉 〈0.5, 0.1〉 〈0.3, 0.2〉 − 〈0.2, 0.7〉

D5 − 〈0.1, 0.6〉 〈0.5, 0.3〉 〈0.6, 0.1〉 〈0.8, 0.1〉

〈Ij, Jj〉 〈2.1, .5〉 〈1.9, 1.1〉 〈1.5, 0.8〉 〈1.5, 1.6〉 〈1.8, 0.9〉

Normalized Sum 〈1.0, 0.3〉 〈0.9, 0.6〉 〈0.7, 0.5〉 〈0.7, 1.0〉 〈0.9, 0.5〉

Score 0.7 0.3 0.2 −0.3 0.4

Table 4.5: Opinion of five experts about the diet

In analysing the nature of diet of a person, Very Healthy and Healthy are the

most analysed factor. Healthy is the IF Median and Very Healthy is the IF mode
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which suggest that the diet of a person is Healthy and he is advised to continue

the same diet.

Definition 4.5.4.

Let U be the universal set. LetX be an IFRV on U and let L = {L1, L2, · · · , Lk}

be a set of k linguistic variables. Denote Ij =
n∑

i=1

µij and Jj =
n∑

i=1

νij . Assume that

〈Lj , NIj , NJj〉 denote the normalised sum of membership and non-membership

of Ij and Jj with respect to Lj such that NIj =
Ij

supIj
and NJj =

Jj

supJj
. Let Sj be

the score function and let wj be the weights. Then intuitionistic fuzzy weighted

mean of X, denoted by IFW is defined as IFW = 〈
n∏

j=1

WjSj

Lj
〉

Example 4.5.4. An organisation is analysing the economical condition of a coun-

try for the next period. Assume that the company operating in Europe and South

Asia is analysing its general policy for next year, based on some strategy. The

group of experts of the company considers the economical situation as the key

factor. Depending on the situation, the expected benefits for the company will be

different. The experts have considered five possible situations for the next year as

S1 = Excellent, S2 = Good, S3 = Fair, S4 = Bad, S5 = Worst. Find the weighted

arithmetic mean for the analysing factor of the company.

Assume that the experts use the weight function for the calculation. Economical

condition is the influencing factor for the progress of the company.
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Expert analysis S1 S2 S3 S4 S5

D1 〈0.6, 0.2〉 〈0.5, 0.1〉 〈0.3, 0.2〉 − 〈0.2, 0.7〉

D2 〈0.8, 0.1〉 〈0.7, 0.3〉 − 〈0.1, 0.7〉 −

D3 − 〈0.1, 0.6〉 〈0.5, 0.3〉 〈0.6, 0.1〉 〈0.8, 0.1〉

D4 − − 〈0.4, 0.2〉 〈0.6, 0.1〉 〈0.8, 0.1〉

D5 〈0.7, 0.2〉 〈0.6, 0.1〉 〈0.3, 0.1〉 〈0.2, 0.7〉 −

〈Ij, Jj〉 〈2.1, 0.5〉 〈1.9, 1.1〉 〈1.5, 0.8〉 〈1.5, 1.6〉 〈1.8, 0.9〉

Normalized Sum 〈1.0, 0.3〉 〈0.9, 0.6〉 〈0.7, 0.5〉 〈0.7, 1.0〉 〈0.9, 0.5〉

Score 0.7 0.3 0.2 −0.3 0.4

Weights 9 8 7 6 7

IFWmean 1.2 0.48 .28 −0.36 0.64

Table 4.6: Expert analysis about economical condition of the company

From Table 4.6, it is infered that the economical condition of the company is

Excellent. There will be a hike in the economical condition for the next year if

the company follows the existing strategies.

4.6 IF statistical tools for IVIFNs

Definition 4.6.1.

Let U be the universal set andX = {〈xi, [ai, bi], [ci, di]〉 : xi ∈ U, ai, bi, ci, di ∈ ℜ}

where i = 1, 2, · · · , n be the set of IVIFNs, on U , then the intuitionistic fuzzy mean

of IVIFNs denoted by IV IF x̄ is defined as

IV IF x̄ =





〈
xi,




n∑
i=1

ai

n ,

n∑
i=1

bi

n


 ,




n∑
i=1

ci

n ,

n∑
i=1

di

n


 : xi ∈ X

〉


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Notations

Let U be the universal set, L = {L1, L2, · · · , Lk} be a set of k linguistic vari-

ables on U and let X = {〈xi, [ai, bi], [ci, di]〉 : xi ∈ U, ai, bi, ci, di ∈ ℜ} where i =

1, 2, · · · , n be the set of IVIFNs on U . Let ρ(xj) be the ranks of IVIFNs xj .

Definition 4.6.2.

The intuitionistic fuzzy median of X is defined as the median of ρ(xj). That is,

IV IFMed = Lj corresponding to median of ρ(xj).

Definition 4.6.3.

The intuitionistic fuzzy mode of X is defined as the maximum of ρ(xj). That

is, IV IFMo = Lj corresponding to maximum of ρ(xj).

Example 4.6.1. An enterprise plans to seek an adequate supplier for purchasing

equipments needed for assembling the parts. Consider a problem of selection of

the best supplier among five suppliers based on five attributes. Let L1= Quality

of the product, L2= Social involvement, L3 = Performance of delivery, L4 = Legal

issue, L5 = Customer relationship be the five linguistic variables. Find also the

IV IFMed and IV IFMode for the best supplier.
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Expert analysis L1 L2 L3 L4 L5

x1 〈[0, 0.2], [0.2, 0.4]〉 〈0, [0.4, 0.6]〉 〈[0.2, 0.4], [0.4, 0.6]〉 〈0.4, [0.2, 0.4]〉 〈0.2, [0.4, 0.8]〉

x2 〈0, [0, 0.6]〉 〈0, 1〉 〈[0.2, 0.4], [0.4, 0.6]〉 〈0.2, 0.6〉 〈0.4, 0.2〉

x3 〈0.6, 0.4〉 〈[0.4, 0.6], [0.2, 0.4]〉 〈0.8, 0〉 〈[0.2, 0.4], [0, 0.4]〉 〈[0.4, 0.6], [0, 0.2]〉

x4 〈[0, 0.2], [0.2, 0.4]〉 〈[0.2, 0.4], [0, 0.4]〉 〈[0.2, 0.6], [0, 0.2]〉 〈[0.2, 0.4], [0.4, 0.6]〉 〈[0.4, 0.6], [0, 0.2]〉

x5 〈0.2, 0.8〉 〈0.2, 0.6〉 〈0.4, 0.4〉 〈0.2, 0.8〉 〈0.4, 0.2〉

Table 4.7: Evaluation of suppliers with respect to five attributes
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Step1: To find RA(xi, xj)

RA(xi, xj) x1 x2 x3 x4 x5

x1 0.5 0.7 0.2 0.3 0.4

x2 0.3 0.5 0 0 0.5

x3 0.8 1 0.5 0.9 1

x4 0.7 1 0.1 0.5 1

x5 0.6 0.5 0 0 0.5

Step2: Calculate Rank

xi x1 x2 x3 x4 x5

RA(xi) 0.42 0.28 0.84 0.66 0.32

ρ(xi) 3 1 5 4 2

Step 3: IFMed = L1/ρ(xj) = median of ρ(xi)

IFMed = 0.42 corresponding to quality of the product.
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IFMo = L3/ρ(xj) = maximum of ρ(xi)

IFMo = 0.84 corresponding to performance of delivery.

Hence, it is inferred

1. from the value of IFMedian that the best supplier will be selected based on

the Quality of the product, they supply.

2. from IFMode that the best supplier will be selected based on the Performance

of delivery.

4.7 IF filters in image processing

IF filters in image processing involves a set of operations using the concept of IFS

theory. IF filtering algorithms are designed for noise suppression and to enhance

the quality of the affected image. The performance of the proposed method is

tested in MATLAB simulations for an image that has been subjected to various

noise [118]. A comparative analysis illustrate the effectiveness of the algorithm.

The existing filtering techniques in image processing helps to enhance the image

using only the membership values. To improve the output image, the operators

on IFSs are used to develop a new system. The aim of this new system is to filter

the noise in the image and to enhance image quality. In this section, the proposed

algorithm for IF filters is discussed:

(i) Read the noisy image and obtain the grey level matrix.

(ii) Set the parameters Fe, Fd as
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Fe = 1, Fd = Xmax−Xmin

(0.5)−1/Fe−1

where Xmax is the maximum level obtained in step(i).

(iii) Define the membership function

µmn =
[
1 + Xmax−Xmn

Fd

]−Fe

where Xmn is the grey level of the pixel which is to be fuzzified.

(iv) Calculate the non-membership values

νmn = 1
2max[|1− µmn| , |0− µmn|] if 0 ≤ µmn ≤ 0.5

νmn = 1
2min[|1− µmn| , |0− µmn|] if 0.5 ≤ µmn ≤ 1

such that 0 ≤ µmn + νmn ≤ 1.

(v) Modify membership and non-membership values 〈µ′

mn, ν
′

mn〉 using any one

of the intuitionistic fuzzy filters namely IF mean, IF maximum, IF minimum,

IF median [using Definitions 3.2.1, 3.2.5, 3.2.6, 3.2.2] respectively.

(vi) Calculate new grey level using modified membership and non-membership

values

g
′

mn = gmax − Fd ∗
(√

µ
′

mn(C1 − ν
′

mn)
) −1

C2∗Fe
+ Fd

where C1 and C2 are arbitrary constants.

(vii) Display IF filtered image.
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4.8 Results and Discussion

The proposed IF algorithm, find better performance to handle imprecision in

grey distribution. Four types of IF filters namely IF mean, IF median, IF maxi-

mum, IF minimum are taken for analysis. A grey scale cameraman image of size

256 x 256 with 8 bits per pixel tone resolution with various noise is considered

for analysis and is subjected to different types of noise namely, salt and pepper

noise, gaussian noise, poisson noise and speckle noise are tested against various

IF filters. IF filter of window size 3 x 3 is applied to the grey scale image. The

performance shows the results of IF filter against various noise types. Comparison

based on image performance is displayed in Table 4.8 and Table 4.9.

Correlation Coefficient (CC) method is widely used for comparing two images

and for measuring the association between two images. Hence, it is used to deter-

mine how close the input and output images co-vary. The Correlation Coefficient

is defined as

r =

n∑
i=1

(Xi −X)(Yi − Y )

√
n∑

i=1

(Xi −X)2

√
n∑

i=1

(Yi − Y )2

(4.1)

where Xi is the intensity of the ithpixel in the original image, Yi is the intensity of

the ith pixel in the restored image, X is the mean intensity of the original image

and Y is the mean intensity of the restored image.
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Pearson’s coefficient varies from −1 to 1. Low absolute values of r means that

two variables posses weak association (uncorrelated). If r = 1 or (−1), it is posi-

tively (negatively) correlated. For qualitative analysis, performances of the filters

are tested at different level of noise densities, and results are tabulated. The per-

formance of the resulting output image is quantified using PSNR and MSE values.

Restored image performance using PSNR is defined as below:

PSNR = 10log10
2552

1
mn

∑
i,j

(ri,j − xi,j)2
(4.2)

MSE =
1

mn

∑

i,j

(ri,j − xi,j)
2 (4.3)

where r - original image, x - restored image and mn - size of the image.

Different types of noise 1 2 3 4

Salt and pepper noise 0.9678 0.9822 0.6896 0.7839

Gaussian noise 0.9479 0.9418 0.8729 0.8240

Poisson noise 0.9754 0.9793 0.9056 0.9040

Speckle noise 0.9703 0.9662 0.9134 0.9087

Table 4.8: Correlation Coefficient

1 - CC of IF mean filter; 2 - CC of IF median filter; 3 - CC of IF maximum filter;

4 - CC of IF minimum filter.
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CC for various noise levels are calculated and are listed in Table 4.8. The

higher values of CC infer that output of the proposed algorithm is in acceptable

ratio.

Cameraman IF mean IF med IF max IF min

image filter filter filter filter

Types of noise PSNR MSE PSNR MSE PSNR MSE PSNR MSE

Salt & pepper 56.91 0.1324 58.62 0.0821 55.995 0.1636 57.44 0.1172

Gaussian 56.56 0.1433 56.75 0.1374 54.97 0.2070 57.82 0.1074

Poisson 57.16 0.1249 57.06 0.1273 56.26 0.1535 57.59 0.1131

Speckle 57.81 0.1075 57.93 0.1047 56.82 0.90876 58.36 0.0947

Table 4.9: PSNR and MSE values for various types of noise

PSNR and MSE values for the various noise tested against IF filters are tab-

ulated in Table 4.9. The higher values of PSNR and lower values of MSE infer

that output of the proposed algorithm is in acceptable ratio.
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Chapter 5

Intuitionistic fuzzy moving

average in decision making

The current topic is to investigate the multi-period decision making prob-

lem where the decision information are provided by decision maker at different

periods and are represented in the form of intuitionistic fuzzy index matrix. It

further analyzes the use of IF moving averages with aggregation operators, dis-

tance measures and OWA operators. A real example, to show the effectiveness

of the proposed algorithm, is carried out to employ growth of Gross Domestic

Product (GDP) of Indian Economy in practical applications. A comparitive anal-

ysis has been made among crisp, fuzzy and IF moving aggregation operators. An

IF multi-period decision making algorithm is designed using IF weighted moving

average. Ranking is performed on the basis of the score function. Finally, it is

inferred that, IF weighted moving average is the most influencing factor to the

growth of GDP.
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5.1 Basic definitions

In this section, the basic notions, concepts and definitions necessary for the study

are briefly reviewed.

Definition 5.1.1. [27]

For any two IFSs A and B in E, the operator @ is defined as

A@B =

{〈
x,
µA(x) + µB(x)

2
,
νA(x) + νB(x)

2

〉
: x ∈ E

}

Definition 5.1.2. [9]

Let α, β ∈ [0, 1]. Given an IFS A, the operator Gα,β(A) is defined as

Gα,β(A) = {〈x, α · µA(x), β · νA(x)〉 : x ∈ E}

Definition 5.1.3. [106]

An ordered weighted averaging operator of dimension n is a mapping OWA :

Rn → R that has an associated weighting vector W = (w1, w2, ..., wm)T such that

wj ∈ [0, 1] and
∑n

j=1wj = 1, Furthermore,

OWA(a1, a2, ..., an) =

n∑

j=1

wjbj

where bj is the jth largest of ai (i = 1, 2, ..., n).
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Definition 5.1.4. [21]

The intuitionistic fuzzy pair (IFP) is an ordered pair of the form 〈a, b〉, where

a, b ∈ [0, 1] and a + b ≤ 1, that is used as an evaluation of some object or

process, and which components (a and b) are interpreted, respectively, as degrees

of membership and non-membership to a given set.

Definition 5.1.5. [97]

For any two IFSs A and B in X = {x1, x2, · · · , xn}, the Hamming distance is

defined as

dH(A,B) =
1

2

n∑

j=1

(|µA(xj)− µB(xj)|+ |νA(xj)− νB(xj)|+ |πA(xj)− πB(xj)|)

Definition 5.1.6. [41]

Let A(µ, ν) be an IFS. Then S(A) =
(µ+1−ν)

2 is called as the score of A where

S(A) ∈ [0, 1].

Definition 5.1.7. [9]

Let A(µ, ν) be an IFS. Then L(A) = µ+ ν be the accuracy of A where L(A) ∈

[0, 1].

Definition 5.1.8. [9]

Let I be a fixed set of indices andR be the set of the real numbers. Intuitionistic
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Fuzzy Index Matrix with index sets K and L (K,L ⊂ I), takes the form:

[K,L, {〈µki,lj , νki,lj〉}] ≡

l1 l2 . . . ln

k1 〈µk1,l1 , νk1,l1〉 〈µk1,l2 , νk1,l2〉 . . . 〈µk1,ln , νk1,ln〉

k2 〈µk2,l1 , νk2,l1〉 〈µk2,l2 , νk2,l2〉 . . . 〈µk2,ln , νk2,ln〉
...

...
... . . .

...

km 〈µkm,l1 , νkm,l1〉 〈µkm,l2 , νkm,l2〉 . . . 〈µkm,ln , νkm,ln〉

,

where K = {k1, k2, ..., km}, L = {l1, l2, ..., ln}, for 1 ≤ i ≤ m,and 1 ≤ j ≤ n :

0 ≤ µki,lj , νki,lj , µki,lj + νki,lj ≤ 1 i.e.,〈µki,lj , νki,lj〉 is an IF pair.

5.1.1 Moving average

Moving average is a succession of averages that aggregates the subset of suc-

cessive segments in a bigger set of information and moves towards some part of

the whole set which is available or to be obtained in the future [60]. The moving

average is usually seen as moving aggregation operator and can be used in aggrega-

tion problems including multi-period aggregation and multi-criteria aggregation.

In literature, different types of moving averages are assessed, in which arithmetic

moving average and the weighted moving average are considered important.

Definition 5.1.9. [60]

An arithmetic moving average of dimension m is a mapping MA : Rm → R

such that

MA(a1+p, a2+p, ..., am+p) =

m+p∑

i=1+p

ai
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where ai is the i
th argument and m is the total number of arguments considered

from the whole sample, p indicates the movement done in the average from the

initial position.

Definition 5.1.10. [60]

A Weighted Moving Average (WMA) of dimension m is a mapping WMA :

Rm → R with an associated weighting vector W = (w1, w2, ..., wm)T , wj ∈ [0, 1]

and
∑m+p

j=1+pwj = 1 such that

WMA(a1+p, a2+p, ..., am+p) =

m+p∑

j=1+p

wjaj ,

where m is the total number of arguments considered from the whole sample, p

indicates the movement done in the average from the initial position.

Note

If p = 0, first argument of the sample is considered for calculating the moving

average, if p = 1 move an average one position by each from the initial position

considering first the second argument, if p = 3 move an average 3 positions from

initial position, considering first the fourth argument and so on.

Definition 5.1.11. [64]

Fuzzy weighted moving average (FWMA) of dimension m is a mapping FWMA :

Rm → R with an associated weighting vector W = (w1, w2, ..., wm)T , wj ∈ [0, 1]

and
∑m+p

j=1+pwj = 1 such that
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FWMA(a1+p, a2+p, ..., am+p) =

m+p∑

j=1+p

wjaj ,

where m is the total number of arguments considered from the whole sample, p

indicates the movement done in the average from the initial position.

5.1.2 Moving Distance Measure

Moving distance measure is a distance measure that move towards the whole

sample and are represented in a dynamic way [60]. An aggregation process is

found by using weighted averages resulting in weighted moving averaging distance

(WMAD) [102]. Its main advantage is that weights are associated to each distance

depending on the relevancy of each distance in the analysis. For two sets, X =

{x1+p, x2+p, ..., xm+p} and Y = {y1+p, y2+p, ..., ym+p}, WMAD can be defined as

follows.

Definition 5.1.12. [60]

A WMAD of dimension m is a mapping WMAD : Rm × Rm → R with an

associated weighting vectorW = (w1, w2, ..., wm)T , wi ∈ [0, 1] and
∑m+p

i=1+p wi = 1

such that

WMAD((x1+p, y1+p), (x2+p, y2+p), ..., (xm+p, ym+p)) =

m+p∑

i=1+p

wid(xi, yi)

where xi and yi are the ith arguments of the sets X and Y respectively, d(xi, yi)

is the averaging distance between xi and yi, m is the total number of arguments
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considered from the whole sample, and p indicates the movement done in the

average from the initial position.

5.2 Intuitionistic fuzzy averaging operators

Let ℘ = {〈µ, ν〉 : µ, ν ∈ [0, 1], 0 ≤ µ+ ν ≤ 1} be a set of all intuitionistic fuzzy

pairs,

℘m = {(a1, a2, ..., am)|aj = 〈µj , νj〉, j = 1, 2, ...,m, µj , νj ∈ [0, 1], 0 ≤ µj + νj ≤ 1}

be the set of all m dimensional intuitionistic fuzzy pairs and m is the sample size.

5.2.1 Intuitionistic fuzzy ordered weighted averaging op-

erator

Definition 5.2.1.

Intuitionistic fuzzy ordered weighted averaging operator of dimension m is a

mapping IFOWA : ℘m → ℘ such that

IFOWA(a1, a2, ..., am) =

m

@

j=1

Gα,β(aj),

where α, β ∈ [0, 1].
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b
b
b

b 〈a1〉

〈α · µa1 , β · νa1〉
〈α · µa2 , β · νa2〉

IFOWA〈a1, a2〉α

β
b 〈a1@

a2〉

b 〈a2〉

〈1, 0〉

〈0, 1〉

Figure 5.1: Geometric interpretation of the operator IFOWA

Let a1 and a2 be two intuitionistic fuzzy pairs which assign a point IFOWA(a1, a2)

with coordinates 〈α · µ(a1)+µ(a2)
2 , β · ν(a1)+ν(a2)

2 〉 depending on the value of the argu-

ments α, β ∈ [0, 1]. The geometric interpretation of the operator IFOWA is shown

in Figure 5.1.

5.2.2 Intuitionistic fuzzy moving average

Intuitionistic fuzzy moving average is the mean of IF data for several consec-

utive time periods where the observations are equally spaced. It is an indicator

that reacts to events that have already happened and used as an interpretive for

confirmations and analysis.

Definition 5.2.2.

An intuitionistic fuzzy moving average (IFMA) is a mapping IFMA : ℘m → ℘
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such that

IFMA(a1+p, a2+p, ..., am+p) =

m+p

@

j=1+p

aj =

〈
1

m

m+p∑

j=1+p

µj ,
1

m

m+p∑

j=1+p

νj

〉
.

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

p = 0

p = 1

p = n

b

Figure 5.2: Geometric interpretation of the operator IFMA

Let a1, a2, ..., am be the collection of intuitionistic fuzzy pairs which assign

a point IFMA(a1+p, a2+p, ..., am+p) for every p, where p indicates the movement

done in the average from the initial position. The geometric interpretation of the

operator IFMA is exhibited in Figure 5.2. An extract of the operator IFMA is

displayed in Figure 5.3.
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〈a1〉
〈a1@a2〉〈a2〉

〈am〉
〈am−1〉
〈am−1@am

〉

b
b

b

b
b

b
b

b

b

Figure 5.3: An extract of the operator IFMA

5.3 Types of IF moving average

In this section, six types of intuitionistic fuzzy moving averages are discussed.

Definition 5.3.1.

An intuitionistic fuzzy weighted moving average (IFWMA) of dimension m

is a mapping IFWMA : ℘m → ℘ with an associated weighting vector W =

(w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+p wj = 1 such that

IFWMA(a1+p, a2+p, ..., am+p) =

m+p∑

j=1+p

wjaj =

〈
1−

m+p∏

j=1+p

(1− µj)
wj ,

m+p∏

j=1+p

ν
wj

j

〉

Intuitionistic fuzzy ordered weighted moving average

The prominent characteristics of intuitionistic fuzzy ordered weighted moving

average is the reordering step, where it first reorders all the given arguments in

descending order and then weights these ordered arguments, and finally aggregates

all these ordered weighted arguments into a collective one.
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Definition 5.3.2.

An intuitionistic fuzzy ordered weighted moving average (IFOWMA) of dimen-

sion m is a mapping IFOWMA : ℘m → ℘ that has an associated weighting vector

W = (w1, w2, ..., wm)T , wk ∈ [0, 1] and
∑m+p

k=1+p wk = 1 such that

IFOWMA(a1+p, a2+p, ..., am+p) =

m+p∑

k=1+p

wkbk =

〈
1−

m+p∏

k=1+p

(1− µk)
wk ,

m+p∏

k=1+p

νwk

k

〉
,

where bk = 〈µk, νk〉 is the kth largest IF pair of aj which is determined using

intuitionistic fuzzy ranking methods [57].

Definition 5.3.3.

An intuitionistic fuzzy ordered weighted averaging - weighted moving average of

dimension m is a mapping IFOWAWMA : ℘m → ℘ that has an associated weight-

ing vector W = (w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1 and a weighting

vector V with
∑m+p

i=1+p vi = 1 and vi ∈ [0, 1] such that

IFOWAWMA(a1+p, a2+p, ..., am+p) = λ

m+p∑

j=1+p

wjbj + (1− λ)

m+p∑

i=1+p

viai

where bj = 〈µj , νj〉 is the jth largest IF value of ai, λ ∈ [0, 1] and ai are the

argument variables represented in the form of IF pairs.

Note

IFOWAWMA is a new model that unifies both IFOWMA operator and IFWMA

operator considering the degree of importance that each one has in the aggregation

process.
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Definition 5.3.4.

An intuitionistic fuzzy induced ordered weighted moving average (IFIOWMA)

of dimension m is a mapping IFIOWMA : Rm × ℘m → ℘ that has an associated

weighting vector W = (w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1 such that

IFIOWMA(〈u1+p, a1+p〉, 〈u2+p, a2+p〉, ..., 〈um+p, am+p〉) =
m+p∑

j=1+p

wjbj

=

〈
1−

m+p∏

j=1+p

(1− µj)
wj ,

m+p∏

j=1+p

ν
wj

j

〉
,

where bj is the ai value of IFIOWMA pair 〈µi, ai〉 having jth largest ui and ui is

the order inducing variable and ai = 〈µi, νi〉 is an IF pair.

Note

The main difference between IFIOWMA and IFOWMA is the reordering step

in IFIOWMA. It is not carried out with the values of the arguments, but with

order inducing variables which changes due to dynamic situations in the imprecise

environment. Auxiliary variable associated with each input is taken as an inducing

variable.

Definition 5.3.5.

An intuitionistic fuzzy weighted geometric moving average (IFWGMA) of di-

mension m is a mapping IFWGMA : ℘m → ℘ with an associated weighting vector

W = (w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1 such that
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IFWGMA(a1+p, a2+p, ..., am+p) =

m+p∑

j=1+p

aj
wj =

〈
m+p∏

j=1+p

(µj)
wj , 1−

m+p∏

j=1+p

(1− νj)
wj

〉

Definition 5.3.6.

An intuitionistic fuzzy weighted harmonic moving average (IFWHMA) of di-

mension m is a mapping IFWHMA : ℘m → ℘ with an associated weighting vector

W = (w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1 such that

IFWHMA(a1+p, a2+p, ..., am+p) =
1

m+p∑
j=1+p

wj

aj

=

〈
1

m+p∑
j=1+p

wj

µj

, 1− 1
m+p∑
j=1+p

wj

1−νj

〉

Numerical Example

Example 5.3.1. Consider the set of closing prices of the stock values from East-

man Kodak for 10 days. Track the closing price of the stock values to smooth the

data.

Assume W = (0.5, 0.2, 0.3) and the order inducing variable of IFIOWMA is U =

{12, 14, 21} . Let A be the closing price of the stock values for 10 days. Here,

iftrif is used for fuzzification process. Let a = 2379, b = 2800, c = 3200 and

ǫ = 0.1

DAYS 1 2 3 4 5 6 7 8 9 10

A 2880 3039 3075 2899 2988.5 2945 2879 2800 2887 3100

Table 5.1: Set of closing price of the stock values for 10 days (in INR)
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IF pair of A IFMA IFWMA IFOWMA IFIOWMA

IF pair score IF pair score IF pair score IF pair score

〈0.7, 0.2〉
〈0.3025, 0.5975〉 〈0.405, 0.495〉 0.455 〈0.5256, 0.3605〉 0.5825 〈0.5256, 0.3605〉 0.5825 〈0.4245, 0.4615〉 0.4815

〈0.2125, 0.6875〉 〈0.3891, 0.5108〉 0.4391 〈0.4201, 0.4717〉 0.4742 〈0.4894, 0.4010〉 0.5442 〈0.4955, 0.3954〉 0.5500

〈0.6525, 0.2475〉 〈0.4312, 0.4687〉 0.4812 〈0.3927, 0.5003〉 0.4462 〈0.5094, 0.3824〉 0.5635 〈0.4305, 0.4639〉 0.4833

〈0.4287, 0.4712〉 〈0.5395, 0.3604〉 0.5895 〈0.5818, 0.3156〉 0.6331 〈0.5728, 0.3240〉 0.6244 〈0.5572, 0.3406〉 0.6083

〈0.5375, 0.3625〉 〈0.5562, 0.3437〉 0.6062 〈0.5497, 0.3444〉 0.6026 〈0.6048, 0.2844〉 0.6602 〈0.6048, 0.2894〉 0.6577

〈0.7025, 0.1975〉 〈0.7133, 0.1866〉 0.7633 〈0.7325, 0〉 0.8662 〈0.8031, 0〉 0.9015 〈0.8031, 0〉 0.9015

〈0.9, 0〉 〈0.7616, 0.1383〉 0.8116 〈0.7654, 0〉 0.8827 〈0.8241, 0〉 0.9120 〈0.7528, 0〉 0.8764

〈0.6825, 0.2175〉 〈0.5775, 0.3225〉 0.6275 〈0.7605, 0〉 0.8802 〈0.7605, 0〉 0.8802 〈0.6326, 0〉 0.8163

〈0.15, 0.75〉

Table 5.2: Different types of IF moving averages (3-day moving)

Four types of 3−day intuitionistic fuzzy moving averages are calculated and listed in Table 5.2. In column 2, IF

moving average gives the average price of stock values for 10 days. At the end of every new day, the oldest data point is

dropped and the newest one is added to the beginning. In column 3, the score values are increasing from 0.455 to 0.6275,

showing increase in trend. In column 4, IFWMAis calculated. Each point within the period is assigned a multiplier which

changes the weight or significance of a particular data point.
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In column 5, the score values are increasing from 0.5825 to 0.8802, showing

increasing trend. In columns 6 and 7, IFOWMA and IFIOWMA are calculated

respectively. As values increase they all show an increasing trend. Hence, it is

inferred, from the entries of Table 5.2, that closing prices over a specified time

period is increasing.

5.4 Intuitionistic fuzzy moving distance measure

Distance measures are used for measuring the deviations of different arguments

[60]. In the existing literature, a variety of IF distance measures have been in-

troduced. IF distance measures are important in various scientific fields such as

decision making, pattern recognition, machine learning and market prediction.

Here, IF distance measures are extended using moving average operators result-

ing in IF moving distance measures.

Intuitionistic fuzzy moving distance makes the comparison between two sets of

elements in a dynamic way to assess the information at different time periods.

It moves towards a sample considering different partial aggregations that can be

obtained by using different information from the sample. IF moving distance

aggregation operators can be used in multi-period aggregation and multi-criteria

aggregation problems.

Notations

Let X = {x1+p, x2+p, ..., xm+p} and Y = {y1+p, y2+p, ..., ym+p} be two IF sets,

m is the sample size and p indicates the movement done in the average from the

initial position.
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Definition 5.4.1.

An intuitionistic fuzzy moving average distance (IFMAD) is a mapping IFMAD :

℘m × ℘m → R such that

IFMAD((x1+p, y1+p), (x2+p, y2+p), ..., (xm+p, ym+p)) =
∑m+p

i=1+p d(xi, yi)

= 1
2

∑m+p
i=1+p(|µ(xi)− µ(yi)|+ |ν(xi)− ν(yi)|+ |π(xi)− π(yi)|)

where xi and yi are the i
th argument of the sets X and Y respectively, d(xi, yi) is

the IF averaging distance between xi and yi.

Definition 5.4.2.

An intuitionistic fuzzy weighted moving average distance (IFWMAD) of dimen-

sion m is a mapping IFWMAD : ℘m × ℘m → R with an associated weighting

vector W = (w1, w2, ..., wm)T , wi ∈ [0, 1] and
∑m+p

i=1+p wi = 1 such that

IFWMAD((x1+p, y1+p), (x2+p, y2+p), ..., (xm+p, ym+p)) =
∑m+p

i=1+p wid(xi, yi)

= 1
2

∑m+p
i=1+p wi(|µ(xi)− µ(yi)|+ |ν(xi)− ν(yi)|+ |π(xi)− π(yi)|)

where xi and yi are the i
th argument of the sets X and Y respectively, d(xi, yi) is

the IF averaging distance between xi and yi.

Intuitionistic fuzzy ordered weighted moving average dis-

tance

Motivated by the idea of the OWA operator, Zeng developed an OWD mea-

sure in intuitioinistic fuzzy environment [111]. In this section, OWD is further

extended using intuitionistic fuzzy moving average which add weightage to the
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ordered position of each deviation value. IFOWMAD provides a family of distance

aggregation operators between IFSs.

Definition 5.4.3.

An intuitionistic fuzzy ordered weighted moving average distance (IFOWMAD)

of dimension m is a mapping IFOWMAD : ℘m × ℘m → R that has an associated

weighting vectorW = (w1, w2, ..., wm)T , wk ∈ [0, 1] and
∑m+p

k=1+p wk = 1 such that

IFOWMAD((x1+p, y1+p), (x2+p, y2+p), ..., (xm+p, ym+p)) =
∑m+p

k=1+p wkd(xk, yk)

= 1
2

∑m+p
k=1+p wk(|µ(xk)− µ(yk)|+ |ν(xk)− ν(yk)|+ |π(xk)− π(yk)|)

where d(xk, yk) is the IF ordered weighted averaging distance between the kth

largest arguments xk and yk of the sets X and Y represented in the form of

individual distance.

Definition 5.4.4.

An intuitionistic fuzzy induced ordered weighted moving average distance (IFIOWMAD)

of dimension m is a mapping IFIOWMAD : Rm × ℘m × ℘m → R that has an as-

sociated weighting vector W = (w1, w2, ..., wm)T , wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1

such that

IFIOWMAD(〈u1+p, x1+p, y1+p〉, 〈u2+p, x2+p, y2+p〉, ..., 〈um+p, xm+p, ym+p〉)

=
∑m+p

j=1+pwjd(xj , yj)

= 1
2

∑m+p
j=1+pwj(|µ(xj)− µ(yj)|+ |ν(xj)− ν(yj)|+ |π(xj)− π(yj)|)

where d(xj , yj) is the IF induced ordered weighted averaging distance value of
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the triplet 〈µi, xi, yi〉 having jth largest ui, ui is the ordered inducing variable,

d(xi, yi) is the argument variable represented in the form of individual distance.

The validity of the formulae defined in this section are verified in Example

5.4.1.

Example 5.4.1. A chemical sales company monitors inventory levels (A) for

two of its chemical products A and B each day. Data are recorded for 10 days.

Let X= sales price of the chemical product A, Y= sales price of the chemical

product B. Assume that the weighting vector is W = (0.4, 0.5, 0.1). Compare the

two variables X and Y and formulate their differences using intuitionistic fuzzy

moving distance operators. Here, iftrif is used for fuzzification process.

Days 1 2 3 4 5 6 7 8 9 10

X 161 99 135 120 164 221 179 204 214 101

Y 157.27 93.28 136.81 123.79 153.51 241.74 201.54 206.71 229.78 135.22

Table 5.3: Set of arguments for 10 days (in INR)

Three types of 3-day intuitionistic fuzzy moving average distances are calcu-

lated and listed in Table 5.4. In column 3, IFMAD computes difference in the

average price of chemical sales. The distance values are increasing from 0.0852 to

0.7643, which infer decrease in price value. Similarly IFWMAD, IFOWMAD are

calculated in columns 4 and 5 respectively and the distance values are increas-

ing. Hence, from Table 5.4, it is seen that on comparing the average sales of the

products, there is a decrease in sales.
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X Y IFMAD IFWMAD IFOWMAD

〈0.9438, 0.0462〉 〈0.8865, 0.1035〉
〈0.0000, 0.9900〉 〈0.0000, 0.9900〉 0.0852 0.0257 0.0257

〈0.5438, 0.4462〉 〈0.5717, 0.4183〉 0.0862 0.0197 0.0372

〈0.3131, 0.6769〉 〈0.3714, 0.6186〉 0.2475 0.05643 0.0964

〈0.9900, 0.0000〉 〈0.8286, 0.1614〉 0.4765 0.1297 0.1892

〈0.2568, 0.7332〉 〈0.0000, 0.9900〉 0.7081 0.2219 0.2605

〈0.7970, 0.1930〉 〈0.5071, 0.4829〉 0.5816 0.2571 0.2478

〈0.4755, 0.5145〉 〈0.4406, 0.5494〉 0.5278 0.1537 0.2209

〈0.3468, 0.6432〉 〈0.1438, 0.8462〉 0.7643 0.1680 0.3155

〈0.0208, 0.9692〉 〈0.5472, 0.4428〉

Table 5.4: Different types of IF moving average distances (3-day moving)

5.5 Multi-period decision making using intuitionistic fuzzy

averaging operator

Multi-period decision making is the process of finding the best alternative for

k-periods from all of the feasible alternatives where all the alternatives can be

evaluated according to a number of attributes. In general, multi-period deci-

sion making problem contains uncertain and imprecise information. Suppose

that there are n alternatives xj , j = 1, 2, ..., n evaluated with respect to m at-

tributes Oi, i = 1, 2, ...,m. The set of alternatives and attributes are denoted by

X = {x1, x2, ..., xn} and O = {o1, o2, ..., om} respectively. Evaluation of any alter-

native xj ∈ X on each attribute oi ∈ O is expressed with an intuitionistic fuzzy set

for multi-period as Fij
k = {〈(oi, xj), µij , νij〉}, where µij ∈ [0, 1] and νij ∈ [0, 1]

such that 0 ≤ µij + νij ≤ 1, denote Fij
k{〈(oi, xj), µij , νij〉} by Fij

k = 〈µij , νij〉

[56].

Intuitionistic fuzzy index matrix for k-multi-period decision making is expressed
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as follows [11] :

F k =




x1 x2 ... xn

o1 〈µ11, ν11〉 〈µ12, ν12〉 ... 〈µ1n, ν1n〉

o2 〈µ21, ν21〉 〈µ22, ν22〉 ... 〈µ2n, ν2n〉

... ... ... ... ...

om 〈µm1, νm1〉 〈µm2, νm2〉 ... 〈µmn, νmn〉




Attributes may be of different importance. Assume that the weight of each at-

tribute oi ∈ O is W , which satisfy the normalized conditions: wi ∈ [0, 1](i =

1, 2, ...,m) and
∑m

i=1wi = 1.

Algorithm for multi-period decision making using intuitionistic fuzzy

weighted average:

Based on the intuitionistic fuzzy weighted averaging operator, algorithm for multi-

period decision making under IF environment is proposed, which involves the fol-

lowing steps:

Step 1: Define the universe of discourse, U = [Dmin, Dmax], based on the range

of available economical time series data, where Dmin, Dmax are minimum and

maximum of time series data, respectively and treat the attributes as linguistic

variables on U.

Step 2: Describe the linguistical terms.

Step 3: Form the membership function and non-membership function for each

linguistic term of the identified attributes. That is, construct an IF set Ai and

apply iftrif to fuzzify the crisp data.

Step 4: Evaluate each alternative xj ∈ X and aggregate the information using
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IFWMA operator, that has an associated weighting vector W = (w1, w2, ..., wm)T ,

wj ∈ [0, 1] and
∑m+p

j=1+pwj = 1 such that

IFWMA(F
1+p, F 2+p, ..., Fm+p) =

m+p∑

j=1+p

wjF
j =

〈
1−

m+p∏

j=1+p

(1− µj)
wj ,

m+p∏

j=1+p

ν
wj

j

〉
,

where m is the total number of arguments considered from the whole sample, p

indicates the movement done in the average from the initial position.

Step 5: Calculate the scores.

Step 6: Rank and select the best alternative.

Step 7: End

5.6 Numerical example

Gross Domestic Product

GDP is the final value of the goods and services produced within the geo-

graphic boundaries of a country during a specified period of time, normally a

year. Its growth rate is an indicator of the economic performance of a country

and it measures the nation’s total output of goods and services useful for a wide

variety of purposes such as measuring productivity, conducting monetary policy,

and projecting tax revenues and provides the information about the size of the

economy and how an economy is performing.

Indian Economy is classified into three sectors namely Agriculture & allied, Indus-

try and Services. Agriculture sector includes agriculture (agriculture proper and

livestock), forestry & logging, fishing and related activities. Industry includes Min-

ing & quarrying, manufacturing, electricity, gas, water supply, and construction.
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Services sector is comprised of trade, repair, hotels and restaurants, transport,

storage, communication & services related to broadcasting, financial, real estate,

community and social services, public administration, defence and other services.

Example 5.6.1. A real time example considering GDP growth of Indian Econ-

omy is taken for analysis and IFWMA operator is used to find application in

multi-period decision making.

Year A1 A2 A3 A4 A5 A6

2010 14.88 15.12 13.03 13.93 12.69 16.41

2009 12.75 12.62 12.78 12.03 11.68 18.42

2008 15.7 18.46 16.67 16.88 15.42 15.56

2007 13.36 12.64 19.53 13.05 21.69 16.19

2006 12.79 12.63 14.95 11.09 15.1 14.12

Table 5.5: GDP for 5 years

GDP of Indian Economy is taken for five years. It comprises of six major

sectors Agriculture & allied, Agriculture, Industry, Mining & quarrying, Manu-

facturing and Service sector. Consider the information from 2006 to 2010 in order

to provide an appropriate forecast that permits to reach the optimal decision.

Evaluate each alternative analyzing the benefits they could give each year. Find
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the sector which influences the growth of GDP in the forth coming year out of six

sectors. Actual GDP data [117] for the period 2010 - 2006 are shown in Table 5.5.

Step 1:

Let the universe of discourse be U = [11.09, 21.69]. Consider the six attributes

A1, A2, ..., A6 as linguistic variables on U as follows:

A1 : Contribution of Agriculture & allied sector

A2 : Contribution of Agriculture sector

A3 : Contribution of Industry sector

A4 : Contribution of Mining & quarrying sector

A5 : Contribution of Manufacturing sector

A6 : Contribution of Service sector

Step 2:

Describe the linguistics terms. The alternatives are

R : Economic recession, S : Stable economy, B : Boom economic condition

Step 3:

In order to deal imprecise and uncertain information in the available data, in-

tuitionistic fuzzifiaction is essential to model the data. Construct an IF set and

apply iftrif to fuzzify the crisp data. That is, form the membership function and

non-membership function for each linguistic term of the identified attributes. The

degree of membership is represented by µ, degree of non-membership is repre-

sented by ν and degree of uncertainty is represented by ǫ, an arbitrary parameter

chosen in such a way that µA(x) + νA(x) + ǫ = 1 and 0 ≤ ǫ < 1.

Assume a = 11.09, b = 15.7, c = 21.69 and ǫ = 0.01.
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The membership and non-membership functions for Recession are defined as

µRA(x) =





1− ǫ ; x ≤ a

( b−x
b−a )− ǫ ; a < x < b

0 ; x ≥ b

and

νRA(x) =





0 ; x ≤ a

1− (x−a
b−a ) ; a < x < b

1− ǫ ; x ≥ b

The membership and non-membership functions for Stable are as follows

µSA(x) =





0 ; x ≤ a

(x−a
b−a )− ǫ ; a < x ≤ b

( c−x
c−b )− ǫ ; b ≤ x < c

0 ; x ≥ c

and

νSA(x) =





1− ǫ ; x ≤ a

1− (x−a
b−a ) ; a < x ≤ b

1− ( c−x
c−b ) ; b ≤ x < c

1− ǫ ; x ≥ c
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The membership and non-membership functions of Boom takes the form

µBA(x) =





0 ; x ≤ a

(x−a
b−a )− ǫ ; a < x < b

1− ǫ ; x ≥ b

and

νBA(x) =





1− ǫ ; x ≤ a

1− (x−a
b−a ) ; a < x < b

0 ; x ≥ b

The fuzzified economical time series data of GDP are displayed in Tables 5.6

- 5.10

R S B

A1 〈0.63185, 0.358155〉 〈0.812125, 0.17788〉 〈0.34721, 0.64279〉

A2 〈0.60923, 0.380773〉 〈0.86419, 0.12581〉 〈0.36983, 0.62017〉

A3 〈0.80621, 0.18379〉 〈0.41082, 0.57918〉 〈0.17285, 0.817155〉

A4 〈0.72139, 0.26862〉 〈0.60605, 0.38395〉 〈0.25767, 0.73233〉

A5 〈0.83826, 0.15174〉 〈0.337070.65293〉 〈0.14080, 0.84920〉

A6 〈0.48764, 0.50236〉 〈0.87147, 0.11853〉 〈0.49141, 0.49858〉

Table 5.6: IF pairs for 2010
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R S B

A1 〈0.83260, 0.15739〉 〈0.35009, 0.63991〉 〈0.14646, 0.84354〉

A2 〈0.84485, 0.14515〉 〈0.32189, 0.66811〉 〈0.134204, 0.85580〉

A3 〈0.82977, 0.16022〉 〈0.35660, 0.63340〉 〈0.14928, 0.84072〉

A4 〈0.90046, 0.08954〉 〈0.19391, 0.79609〉 〈0.07860, 0.91140〉

A5 〈0.93345, 0.05655, 〉 〈0.11798, 0.87201〉 〈0.04560, 0.94439〉

A6 〈0.29820, 0.69180〉 〈0.53591, 0.45410〉 〈0.68086, 0.309146〉

Table 5.7: IF pairs for 2009

R S B

A1 〈0.55456, 0.43543〉 〈0.99, 0〉 〈0.42449, 0.56550〉

A2 〈0.29442, 0.69557〉 〈0.52923, 0.46076〉 〈0.6846, 0.30537〉

A3 〈0.46313, 0.52686〉 〈0.82806, 0.16193〉 〈0.51591, 0.47408〉

A4 〈0.44334, 0.54665〉 〈0.79300, 0.19699〉 〈0.53571, 0.45428〉

A5 〈0.58095, 0.40904〉 〈0.92926, 0.06073〉 〈0.39810, 0.59189〉

A6 〈0.56775, 0.42224〉 〈0.95963, 0.030368〉 〈0.41130, 0.57869〉

Table 5.8: IF pairs for 2008
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R S B

A1 〈0.77511, 0.21489〉 〈0.48241, 0.50759〉 〈0.20395, 0.78605〉

A2 〈0.84297, 0.14703〉 〈0.32623, 0.66377〉 〈0.13609, 0.85391〉

A3 〈0.19358, 0.79642〉 〈0.35060, 0.63940〉 〈0.78548, 0.20452〉

A4 〈0.80433, 0.18567〉 〈0.41516, 0.57484〉 〈0.17473, 0.81527〉

A5 〈0.80433, 0.18567〉 〈0.41516, 0.57484〉 〈0.17473, 0.81527〉

A6 〈0.50838, 0.48162〉 〈0.90820, 0.08180〉 〈0.47068, 0.51932〉

Table 5.9: IF pairs for 2007

R S B

A1 〈0.82883, 0.16117〉 〈0.35876, 0.63124〉 〈0.15023, 0.83977〉

A2 〈0.84391, 0.14609〉 〈0.32406, 0.66594〉 〈0.13515, 0.85485〉

A3 〈0.62525, 0.36475〉 〈0.82731, 0.16269〉 〈0.35381, 0.63619〉

A4 〈0.99000, 0.00000〉 〈0.00000, 0.99000〉 〈0.00000, 0.99000〉

A5 〈0.61111, 0.37889〉 〈0.85985, 0.13015〉 〈0.36795, 0.62205〉

A6 〈0.70348, 0.28652〉 〈0.64727, 0.34273〉 〈0.27558, 0.71442〉

Table 5.10: IF pairs for 2006

Step 4:

To aggregate, consider the weighting vector W = (0.1, 0.2, 0.2, 0.2, 0.3). The

analysis is focused on making a forecast for the sixth year based on previous five

years. The results are shown in Table 5.11.
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R S B

A1 〈0.76474, 0.22450〉 〈0.76293, 0.00043〉 〈0.24366, 0.746198〉

A2 〈0.76865, 0.21966〉 〈0.46445, 0.52369〉 〈0.31518, 0.67381〉

A3 〈0.62472, 0.36353〉 〈0.66926, 0.31845〉 〈0.47021, 0.51827〉

A4 〈0.91056, 0〉 〈0.42796, 0.55990〉 〈0.21181, 0.55990〉

A5 〈0.69315, 0.29082〉 〈0.69440, 0.28823〉 〈0.68860, 0.18853〉

A6 〈0.55609, 0.43340〉 〈0.83318, 0.15077〉 〈0.46524, 0.524287〉

Table 5.11: Forecast for the sixth year using IFWMA

Step 5:

Once matrix is formed, the data is ready for analysis. Assume W = (0.5, 0.2, 0.3).

Aggregated result using IFWMA is as follows.

A1= 〈0.665534, 0.09220〉 A2=〈0.62107, 0.36581〉 A3=〈0.59421, 0.39377〉

A4=〈0.75098, 0〉 A5=〈0.69205, 0.25490〉 A6=〈0.61404, 0.37152〉

Step 6:

Calculate the score values.

A1 =0.78666, A2= 0.62762, A3 = 0.60021 A4 =0.87549, A5=0.71857, A6 =0.62125

Rank all the alternatives in accordance with the scores:

A4 ≻ A1 ≻ A5 ≻ A2 ≻ A6 ≻ A3

Hence, A4 is the best alternative. It is forecasted that using IFWMA, Mining &

quarrying sector influence the growth of GDP for the forth coming year 2011.
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5.7 Results and discussion

A comparitive analysis has been made using moving average in crisp, fuzzy and

intuitionistic fuzzy environment. While observing the given time series data, it is

clear that A4 influences the growth of GDP, which reflects the original forecast

for the year 2011. FWMA shows that A1 is the dominating factor, WMA shows

that A6 is the dominating factor, which are least influencing factor in the original

data for 2011.

Hence, it is inferred that, by employing IFWMA, A4 is the best influencing

factor to the growth of GDP and comparitively IFWMA is a better tool to fore-

cast the result for the forth coming year 2011.

Comparison of Ranking orders of alternatives using different moving average

operators is as follows

Aggregation operators Ranking orders of alternatives Best alternatives

IFWMA A4 ≻ A1 ≻ A5 ≻ A2 ≻ A6 ≻ A3 A4

FWMA A1 ≻ A6 ≻ A3 ≻ A4 ≻ A2 ≻ A5 A1

WMA A6 ≻ A3 ≻ A5 ≻ A2 ≻ A1 ≻ A4 A6

In literature, nine types of intutionistic fuzzification functions are defined to

characterize fuzziness on the basis of different shapes of the membership and non-

membership functions. Here, iftrif and iftraf are used for fuzzification. The

choice of intuitionistic fuzzification function to be used depends entirely on the

117



problem under consideration.

Note that in this example, sixth year forecast has been made based on previous

five years using IFWMA operator and can also be used in a more dynamic process

that considers 1 year, 2 years, 3 years and more. Here, instead of using the moving

average for one variable, it is used for the whole matrix.
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Chapter 6

Intuitionistic fuzzy tree

center-based clustering algorithm

6.1 Introduction

Graph theoretical ideas are highly utilized in data mining, image segmentation,

clustering, image processing and networks. Graph theory appears to be very con-

venient to describe clustering problems. The concept of a tree can be used to

design a data structure of a model. The notion of fuzzy sets was introduced by

L.A Zadeh as a method of representing uncertainty and vagueness in [110]. The

theory of intuitionistic fuzzy sets (IFSs), introduced by Atanassov( [8], [9]), is an

extension of fuzzy set theory in which, not only membership degree is given, but

also non-membership degree, which is more or less independent. Fuzziness and un-

certainty in the real world existing information, the attributes of the data sets are

often given with intuitionistic fuzzy sets. Intutionistic fuzzy set is a suitable tool

to cope with imperfectly defined facts and data, as well as with imprecise knowl-

edge. A.Rosenfeld introduced and examined such concepts as paths, cycle, trees
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and connectedness in fuzzy graphs [86]. In [66], various types of fuzzy cycles, fuzzy

trees in fuzzy graphs defined using level sets. The concept of domination in fuzzy

graphs was studied in [95]. R.Parvathi and K.Atanassov [37] defined intuition-

istic fuzzy trees using index matrix interpretation. M.Akram and N.O.Alshehri

[1] introduced various types of intuitionistic fuzzy trees and investigated some of

their properties. Zhang and Chen [114] suggested a clustering technique of IFSs

on the basis of the λ-cutting matrix of an interval-valued matrix. Xu and Yager

[104] gave a clustering technique by transforming an association matrix into an

equivalent association matrix, from which a k-cutting matrix is derived and used

to cluster the given IFSs. Cai et al. [33] presented a clustering method based on

the intuitionistic fuzzy equivalent dissimilarity matrix and (α, β)-cutting matri-

ces. Zahn [109] proposed clustering algorithm using the minimal spanning tree

(MST). Distance between IFSs is considered to form clusters in [109]. Dong et al.

[42] gave a hierarchical clustering algorithm based on fuzzy graph connectedness.

H.Zhao et al.[115] developed an intuitionistic fuzzy minimum spanning tree clus-

tering algorithm to deal with intuitionistic fuzzy information. Hence, intuitionistic

fuzzy clustering techniques are based on distance and similarity measure betweem

IFSs. In this way, the authors are motivated to concentrate on intuitionistic fuzzy

trees (IFTs) and their structure and to apply these concepts to design a clustering

algorithm. In this paper, distance, radius, diameter and center of intuitionistic

fuzzy trees are introduced and their domination properties are analyzed. Also,

intuitionistic fuzzy tree center-based clustering algorithm is proposed to cluster

the numerical data set. As the existing data in real-life are crisp, S-shaped intu-

itionistic fuzzification function is used in the proposed method. These values give
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the membership and non-membership of the vertices of the IFT under consider-

ation. A new distance measure 1 between two IFSs, is defined and applied it to

construct the intuitionistic fuzzy distance matrix. Center of an IFT is obtained by

eccentricity concept. On the basis of the (λ, δ)-cutting matrix on distance matrix

is used to cluster the given dataset. This algorithm is verified with classification of

the numerical data sets containing nutrients in 27 different kinds of meat, fish or

fowl with five attributes. The developed clustering method is compared with two

existing clustering methods namely Zhang et al. [114] and Z.Wang et al. [116].

6.2 Preliminaries

In this section, some basic definitions relating to intuitionistic fuzzy graphs (IFGs)

are given. Also, the definitions of partial spanning subgraph, spanning subgraph,

distance, eccentricity, radius, diameter and center of IFTs are given.

Notations

1. Hereafter, (µi, νi) denotes the degrees of membership and non-membership

of the vertex vi ∈ V such that 0 ≤ µi + νi ≤ 1.

2. (µij , γij) denotes the degrees of membership and non-membership of the

edge (vi, vj) ∈ V × V such that 0 ≤ µij + γij ≤ 1.

Definition 6.2.1. [95] Let X be a universal set and let V be an IFS over X in the

form V = {(vi, µi, γi) |vi ∈ V } such that 0 ≤ µi + γi ≤ 1. Six types of cartesian

products of n elements of V over X are defined as

1The proposed measure is characterized by interval of membership and non-

membership values rather a classical distance measure, which is defined as real number.
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v1×1v2×1v3×1· · ·×1vn =

{〈
(v1, v2, · · · , vn) ,

n∏

i=1

µi,

n∏

i=1

γi

〉
| (v1, v2, · · · , vn) ∈ V

}

v1×2v2×2v3×2 · · ·×2vn =





〈
(v1, v2, . . . , vn) ,

n∑

i=1

µi −
n∑

i 6=j

µiµj +

n∑

i 6=j 6=k

µiµjµk−

· · ·+(−1)n−2
n∑

i 6=j 6=k 6=n

µiµjµk · · ·µn +(−1)n−1
n∏

i=1

µi,

n∏

i=1

γi

〉
| (v1, v2, · · · , vn) ∈ V

}

v1 ×3 v2 ×3 v3 ×3 · · · ×3 vn =





〈
(v1, v2, · · · , vn) ,

n∏

i=1

µi,

n∑

i=1

γi −
n∑

i 6=j

γiγj +

n∑

i 6=j 6=k

γiγjγk−· · ·+(−1)n−2
n∑

i 6=j 6=k 6=n

γiγjγk · · · γn +(−1)n−1

n∏

i=1

γi

〉
| (v1, v2, · · · , vn) ∈ V

}

v1 ×4 v2 ×4 v3 ×4 · · · ×4 vn =

{〈(v1, v2, · · · , vn) ,min(µ1, µ2, · · · , µn), max(γ1, γ2, · · · , γn)〉 | (v1, v2, · · · , vn) ∈ V }

v1 ×5 v2 ×5 v3 ×5 · · · ×5 vn =

{〈(v1, v2, · · · , vn) ,max(µ1, µ2, · · · , µn), min(γ1, γ2, · · · , γn)〉 | (v1, v2, · · · , vn) ∈ V }

v1×6v2×6v3×6· · ·×6vn =





〈
〈v1, v2, . . . , vn〉 ,

n∑

i=1

µi

n ,

n∑

i=1

γi

n

〉
| 〈v1, v2, · · · , vn〉 ∈ V





It must be noted that vi×t vj is an IFS , where t = 1, 2, 3, 4, 5, 6 such that the

sum of their degrees of membership and non-membership lies in [0, 1].

Definition 6.2.2. [53] An intuitionistic fuzzy graph (IFG) is of the form G =

(V,E) where

(i) V = {v1, v2, ..., vn} , such that µi : V → [0, 1] and γi : V → [0, 1] denote the
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degrees of membership and non-membership of the element vi ∈ V respectively,

and 0 ≤ µi + γi ≤ 1 for every vi ∈ V, i = 1, 2, · · · , n

(ii) E ⊂ V × V where µij : V × V → [0, 1] and γij : V × V → [0, 1] are such that

µij ≤ µi ⊘ µj ,

γij ≤ γi ⊘ γj

and

0 ≤ µij + γij ≤ 1

where µij and γij are the degrees of membership and non-membership of the edge

(vi, vj); the values µi⊘µj and γi⊘γj can be determined by one of the six cartesian

products ×t, t = 1, 2, 3, 4, 5, 6 for all i and j given in Definition 2.

Definition 6.2.3. An IFG, H = (V ′, E′) is said to be a partial intuitionistic

fuzzy subgraph of G = (V,E) if

(i) V ′ ⊂ V , µ
′

i ≤ µi, γ
′

i ≤ γi for all vi ∈ V
′

, i = 1, 2, . . . n.

(ii) E′ ⊂ E, µ
′

ij ≤ µij , γ
′

ij ≤ γij for all (vi, vi) ∈ E
′

, i, j = 1, 2, . . . n.

Definition 6.2.4. [53] An IFG, H = (V ′, E′) is said to be an intuitionistic fuzzy

subgraph of G = (V,E) if

(i) V ′ ⊂ V , µ
′

i = µi, γ
′

i = γi for all vi ∈ V
′

, i = 1, 2, . . . n.

(ii) E′ ⊂ E, µ
′

ij = µij , γ
′

ij = γij for all (vi, vi) ∈ E
′

, i, j = 1, 2, . . . n.
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Definition 6.2.5. An IFG, H = (V ′, E′) is said to be a partial intuitionistic

fuzzy spanning subgraph of G = (V,E) if

(i) V ′ = V , µ
′

i ≤ µi, γ
′

i ≤ γi for all vi ∈ V
′

, i = 1, 2, . . . n.

(ii) E′ ⊂ E, µ
′

ij ≤ µij , γ
′

ij ≤ γij for all (vi, vi) ∈ E
′

, i, j = 1, 2, . . . n.

Definition 6.2.6. An IFG, H = (V ′, E′) is said to be an intuitionistic fuzzy

spanning subgraph(IFSSG) of G = (V,E) if

(i) V ′ = V , µ
′

i = µi, γ
′

i = γi for all vi ∈ V
′

, i = 1, 2, . . . n.

(ii) E′ ⊂ E, µ
′

ij = µij , γ
′

ij = γij for all (vi, vi) ∈ E
′

, i, j = 1, 2, . . . n.

Definition 6.2.7. [77] Let G = (V,E) be an IFG, then the cardinality of a subset

S of V is defined as |S| =
∑

vi∈S

(
1 + µi − γi

2

)
for all vi ∈ S.

Definition 6.2.8. [77] The number of vertices in G is called as order of an IFG,

G = (V,E), denoted by o(G), and is defined as o(G) =
∑

vi∈V

(
1 + µi − γi

2

)
for all

vi ∈ V.

Definition 6.2.9. [77] An IFG, G = (V,E) is said to be complete IFG if

µij = min(µi, µj) and γij = max(γi, γj) for every vi, vj ∈ V.

Definition 6.2.10. [66] If vi, vj ∈ V ⊆ G, the µ-strength of connectedness be-

tween vi and vj is µ
∞
ij = sup{µkij | k = 1, 2, . . . , n} and γ-strength of connectedness

between vi and vj is γ∞ij = inf{γkij | k = 1, 2, . . . , n}.

If vi, vj are connected by means of paths of length k then µkij is defined as

sup{µi1 ∧ µ12 ∧ µ23 . . . ∧ µk−1j | vi, v1, v2 . . . vk−1, vj ∈ V } and γkij is defined

as inf{γi1 ∨ γ12 ∨ γ23 . . . ∨ γk−1j | vi, v1, v2 . . . vk−1, vj ∈ V }
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Definition 6.2.11. [66] An edge (vi, vj) is said to be a strong edge of an IFG

G = (V,E), if µij ≥ µ∞ij and γij ≥ γ∞ij .

Definition 6.2.12. [95] An IFG, G = (V,E) is said to be connected IFG if there

exists a path between every pair of vertices vi, vj in V . Connected IFG is also

defined using strength of connectedness as follows:

(i) µ∞ij > 0, and γ∞ij > 0

(ii) µ∞ij = 0, and γ∞ij > 0

(iii) µ∞ij > 0, and γ∞ij = 0 for all vi, vj ∈ V.

Definition 6.2.13. [99] An IFG, G = (V,E) is said to be intuitionistic fuzzy

forest (IFF), if it has an intuitionistic fuzzy spanning subgraph H = (V ′, E′),

which is a forest (in crisp sense), where for all edges (vi, vj) not in H, µij < µ
′∞
ij

and γij > γ
′∞
ij .

Definition 6.2.14. [99] An connected IFG, G = (V,E) is said to be intuitionistic

fuzzy tree (IFT) if it has an intuitionistic fuzzy spanning subgraph H = (V ′, E′),

which is a tree (in crisp sense), where for all edges (vi, vj) not in H, µij < µ
′∞
ij

and γij > γ
′∞
ij .

Definition 6.2.15. [99] A connected IFG, G = (V,E) is said to be intuitionistic

fuzzy spanning tree (IFST), if it has an IFSSG, H = (V ′, E′) which is a tree.

Definition 6.2.16. [77] A path in an IFG is a sequence of distinct vertices

v1, v2, . . . vn, such that either one of the following conditions is satisfied for some

i, j = 1, 2, 3 . . . n :
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(i) µij > 0, γij > 0

(ii) µij = 0, γij > 0

(iii) µij > 0, γij = 0.

Definition 6.2.17. [99] A strong path in an IFG is a path P = v1v2 . . . vn, in

which for every edge (vi, vj) ∈ P , is strong edge.

Definition 6.2.18. [42] The length of a path P = v1v2 . . . vn+1 (n > 0) is n.

Example 6.2.1. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4},

E = {(v1, v2), (v2, v4), (v1, v3), (v3, v4)}. and its IFSSG H = V ′, E′) , G = (V,E),

such that V = {v1, v2, v3, v4}, E = {(v1, v2), (v2, v4), (v1, v3)}. This example shows

an IFG is an IFT

v2 〈0.4, 0.5〉

v4 〈0.6, 0.2〉v3 〈0.3, 0.5〉

v1 〈0.5, 0.3〉

〈0.3, 0.4〉

〈0.1, 0.5〉

〈0.4, 0.3〉

〈0.2, 0.4〉

v2 〈0.4, 0.5〉

v4 〈0.6, 0.2〉v3 〈0.3, 0.5〉

v1 〈0.5, 0.3〉

〈0.3, 0.4〉〈0.2, 0.4〉

〈0.4, 0.3〉

b b

bb

b

b

b

b

(a)

(b)

Figure 6.1: (a) Intuitionistic fuzzy graph G (b)Spanning subgraph H
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Note 1. Every Intuitionistic fuzzy graph is not an intuitionistic fuzzy tree.

Example 6.2.2. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4},

E = {(v1, v2), (v1, v3), (v3, v4), (v1, v4), (v2, v3)}.

b b

b
b

bbb

b

v1 〈0.5, 0.3〉 v2 〈0.4, 0.3〉

v4 〈0.6, 0.1〉v3 〈0.5, 0.5〉

〈0.3, 0.2〉

〈0.
1,
0.
3〉

〈0.3, 0.2〉

〈0.4, 0.3〉

〈0.4, 0.2〉

〈0.3, 0.3〉

Figure 6.2: Intuitionistic fuzzy graph G

In the above example, Figure 6.2 is an intuitionistic fuzzy graph but not an

intuitionistic fuzzy tree.

Definition 6.2.19. Let G = (V,E) be an IFT and let P = v1v2 . . . vn be a path.

The µ-length of P in G, denoted by lµ(P ), is defined as, lµ(P ) =
∑

(vi,vj)∈P
µij ,

i, j = 1, 2, 3 . . . n. The γ- length of path P , in G, denoted by lγ(P ), is defined as

lγ(P ) =
∑

(vi,vj)∈P
γij , i, j = 1, 2, 3 . . . n. The length of P in G, denoted by l(P ), is

defined as l(P ) = (lµ(P ), lγ(P )).

Definition 6.2.20. Let G = (V,E) be an IFT. For any two vertices vi and vj

in G, Let Ω = {Pi : Pi is a vi − vjpath, i = 1, 2, 3 . . . n}. The µ- distance between

any two vertices vi, vj ∈ V , denoted by δµi,µj and is defined as
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δµi,µj = min {lµ(Pi) : Pi ∈ Ω, i = 1, 2, 3 . . . n} .

The γ- distance between any two vertices vi, vj ∈ V , denoted by δγi,γj and is

defined as δγi,γj = min {lγ(Pi) : Pi ∈ Ω, i = 1, 2, 3 . . . n} . The distance, δ(vi, vj),

is defined as δ(vi, vj) = (δµi,µj , δγi,γj).

Definition 6.2.21. Let G = (V,E) be an IFT. For each vi ∈ V, the µ- ec-

centricity of vi, denoted by eµi , is defined as eµi= max
{
δµi,µj : vi ∈ V, vi 6= vj

}
.

For each vi ∈ V, the γ-eccentricity of vi, denoted by eγi , is defined as eγi= max

{
δγi,γj : vi ∈ V, vi 6= vj

}
. For each vi ∈ V, the eccentricity of vi, denoted by e(vi),

and is defined as e(vi) = (eµi , eγi).

Definition 6.2.22. Let G = (V,E) be an IFT. The µ-radius of G, denoted by

rµ(G), is defined as rµ(G) = min {eµi : vi ∈ V }. The γ - radius of G, denoted by

rγ(G), is defined as rγ(G) = min {eγi : vi ∈ V }.The radius of G, denoted by r(G)

is defined as r(G) = (rµ(G), rγ(G)).

Definition 6.2.23. Let G = (V,E) be an IFT. The µ-diameter of G, denoted by

diamµ(G), is defined as diamµ(G) = max {eµi : vi ∈ V }. The γ-diameter of G,

denoted by diamγ(G), defined as diamγ(G) = max {eγi : vi ∈ V }. The diameter

of G, denoted by diam(G), is defined as diam (G) = (diamµ(G), diamγ(G)).

Definition 6.2.24. A vertex vi ∈ V is called a central vertex of an IFT G =

(V,E), if rµ(G) = eµi and rγ(G) = eγi . The set of all central vertices of an IFT is

denoted by CV (G)

Definition 6.2.25. An IFSG H = (V ′, E′) induced by the central vertices of G ,

is called center of G, denoted by C(G).
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Definition 6.2.26. A vertex vi ∈ V is called a peripheral vertex of an IFT

G = (V,E), if diamµ(G) = eµi and diamγ(G) = eγi . The set of all peripheral

vertices of an IFT is denoted by Z(G) .

Definition 6.2.27. Let G = (V,E) be an IFT, then the distance function δ :

V × V → [0, 1]× [0, 1] is a metric on V , if the following conditions are satisfied:

(i) δ(vi, vj) ≥ 0

ie, δµi,µj ≥ 0, δγi,γj ≥ 0, ∀vi, vj ∈ V

(ii) δ(vi, vj) = (0, 1) if and only if vi = vj

(iii) δ(vi, vj) = δ(vj , vi) ie, δµi,µj = δµj ,µi , δγi,γj = δγj ,γi

(iv) δµi,µj ≤ δµj ,µk + δµk,µj , δγi,γj ≤ δγj ,γk + δγk,γj , vi, vj , vk ∈ V .

Definition 6.2.28. [3] A vertex vk ∈ V of an IFG G = (V,E) is called cut vertex

if µ∞ij (G− vk) < µ∞ij and γ∞ij (G− vk) > γ∞ij for some vi, vj ∈ V .

Definition 6.2.29. Let G = (V,E) be an IFG and let Y = {v1, v2, . . . vn} be

vertex cut in G. The µ- strong weight of Y in G, denoted by Sµ(Y ), is defined as,

Sµ(Y ) =
∑

vj∈Y
µij , i, j = 1, 2, 3 . . . n, where µij is the minimum membership weight

of strong edges incident on vi.The γ- strong weight of Y in G, denoted by Sγ(Y ),

is defined as, Sµ(Y ) =
∑

vj∈Y
µij , i, j = 1, 2, 3 . . . n, where γij is the maximum non-

membership weight of strong edges incident on vi. The strong weight of Y in G,

denoted by S(Y ), is defined as S(Y ) = (Sµ(Y ), Sγ(Y )).

Definition 6.2.30. Let G = (V,E) be an IFG, the µ-vertex connectivity of G, de-

noted by kµ(G), is defined as, kµ(G) = min(Sµ(Y )). The γ-vertex connectivity of
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G, denoted by kγ(G), is defined as, kγ(G) = min(Sγ(Y )). The vertex connectivity

of G, denoted by k(G), is defined as, (kµ(G), kγ(G)).

Definition 6.2.31. An edge ek ∈ E of an IFG G = (V,E) is called cut edges if

µ∞ij (G− ek) < µ∞ij and γ∞ij (G− ek) > γ∞ij for some vi, vj ∈ V .

Definition 6.2.32. Let G = (V,E) be an IFG and let E = {e1, e2, . . . en} be

edge cut in G. The µ- strong weight of E in G, denoted by S
′

µ(E), is defined as,

S
′

µ(E) =
∑

ei∈E
µij , i, j = 1, 2, 3 . . . n. The γ- strong weight of E in G, denoted by

S
′

γ(E), is defined as, S
′

γ(E) =
∑

ei∈E
γij , i, j = 1, 2, 3 . . . n, The strong weight of E

in G, denoted by S
′

(E), is defined as S
′

(E) = (S
′

µ(E), S
′

γ(E)).

Definition 6.2.33. Let G = (V,E) be an IFG, the µ-edge connectivity of G,

denoted by k
′

µ(G), is defined as, k
′

µ(G) = min(S
′

µ(E)). The γ-edge connectivity of

G, denoted by k
′

γ(G), is defined as, k
′

γ(G) = min(S
′

γ(E)). The edge connectivity

of G, denoted by k
′

(G), is defined as, (k
′

µ(G), k
′

γ(G)).

Definition 6.2.34. A vertex vi ∈ V of an IFT G = (V,E) is called end vertex

if µij ≥ µ∞ij and γij ≥ γ∞ij for at most one vj ∈ V .

Note 2. (1) In an IFT, the diameter not necessarily be twice of the radius.

(2) The center of intuitionistic fuzzy tree need not be k1 or k2.

(3) For any spanning subgraph H (which is a tree) of G contains atleast two

end vertices and every vertex in G is either cut vertex or end vertex.

Example 6.2.3. Example for single-centered intuitionistic fuzzy tree with one

central vertices
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Consider an IFT,G = (V,E), such that V = {v1, v2, v3, v4, v5}, E = {(v1, v2), (v2, v3),

(v1, v5), (v3, v4), (v5, v4), (v3, v2)}.

b

b

b

bb

v1 〈0.3, 0.2〉

v2 〈0.6, 0.3〉

v3 〈0.4, 0.1〉v4 〈0.3, 0.6〉

v5 〈0.2, 0.6〉

〈0.3, 0.3〉

〈0.4, 0.2〉

〈0.3, 0.5〉

〈0.2
, 0.

6〉
〈0.2, 0.6〉

〈0.3, 0.4〉

Figure 6.3: Intuitionistic fuzzy tree G

By routine computations , we have

(i) δ(v1, v2) = 〈0.3, 0.3〉 , δ(v1, v3) = 〈0.7, 0.5〉 , δ(v1, v4) = 〈0.5, 0.9〉 , δ(v1, v5) =

〈0.3, 0.4〉 , δ(v2, v3) = 〈0.4, 0.2〉, δ(v2, v4) = 〈0.2, 0.6〉, δ(v2, v5) = 〈0.4, 0.6〉 ,

δ(v3, v4) = (0.3, 0.5), δ(v3, v5) = 〈0.5, 0.9〉 , δ(v4, v5) = 〈0.2, 0.6〉.

(ii) Eccentricity of each vertex is e(v1) = 〈0.7, 0.9〉, e(v2) = 〈0.4, 0.6〉, e(v3) =

〈0.7, 0.9〉, e(v4) = 〈0.5, 0.9〉, e(v5) = 〈0.5, 0.9〉

(iii) Radius of G is 〈0.4, 0.6〉, diameter of G is 〈0.7, 0.9〉.

(iv) The central vertex of G is v2, That is r(G) = e(v2)

(v) The center of G is displayed in Figure 6.4

(vi) The peripheral vertices of G are v3 and v1.
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b

b

⊗

bb

v1 〈0.3, 0.2〉

v2 〈0.6, 0.3〉

v3 〈0.4, 0.1〉v4 〈0.3, 0.6〉

v5 〈0.2, 0.6〉

〈0.3, 0.3〉

〈0.4, 0.2〉

〈0.3, 0.5〉

〈0.2
, 0.

6〉
〈0.2, 0.6〉

〈0.3, 0.4〉

Figure 6.4: Center C(G)

Example 6.2.4. Example for bi-centered intuitionistic fuzzy tree with two central

vertices:

Consider an IFT, G = (V,E), such that V = {v1, v2, v3, v4},

E = {(v1, v2), (v4, v3), (v2, v4), (v1, v4), (v2, v3)}.

b b

bb

v1 〈0.3, 0.4〉

v4 〈0.4, 0.5〉 v3 〈0.3, 0.2〉

v2 〈0.2, 0.4〉〈0.2, 0.3〉

〈0.
2,
0.
3〉

〈0.2, 0.3〉

〈0.1, 0.5〉

〈0.2, 0.3〉

Figure 6.5: Intuitionistic fuzzy tree G

Therefore,

(i) δ(v1, v2) = 〈0.2, 0.3〉 , δ(v1, v3) = 〈0.3, 0.6〉 , δ(v1, v4) = 〈0.2, 0.3〉, δ(v2, v1) =

〈0.2, 0.3〉, δ(v2, v4) = 〈0.1, 0.5〉, δ(v2, v3) = 〈0.2, 0.3〉 , δ(v3, v4) = 〈0.1, 0.5〉

(ii) Eccentricity of each vertex is e(v1) = 〈0.3, 0.6〉, e(v2) = 〈0.2, 0.5〉, e(v3) =

〈0.3, 0.6〉, e(v4) = 〈0.2, 0.5〉
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(iii) Radius of G is 〈0.2, 0.5〉, diameter of G is 〈0.3, 0.6〉.

(iv) The central vertices of G is {v2, v4}, That is r(G) = e(v2), r(G) = e(v4)

(v) The center of C(G) is displayed in Figure 6.6.

b ⊗

b⊕

v1 〈0.3, 0.4〉

v4 〈0.4, 0.5〉
v3 〈0.3, 0.2〉

v2 〈0.2, 0.4〉〈0.2, 0.3〉

〈0.
2,
0.
3〉

〈0.2, 0.3〉

〈0.1, 0.5〉

〈0.2, 0.3〉

Figure 6.6: Center C(G)

(vi) The peripheral vertices of G are v1 and v3.

Example 6.2.5. Example for tri-centered intuitionistic fuzzy tree with three cen-

tral vertices:

Consider an IFT, G = (V,E), such that V = {v1, v2, v3, v4, v5},

E = {(v1, v2), (v4, v3), (v2, v4), (v1, v4), (v2, v3), (v5, v2), (v1, v5), (v5, v4), (v1, v5)}.

By routine computations , we have

(i) δ(v1, v2) = 〈0.5, 0.5〉 , δ(v1, v3) = 〈0.5, 0.2〉 , δ(v1, v4) = 〈0.3, 0.4〉 , δ(v1, v5) =

〈0.5, 0.3〉 δ(v2, v3) = 〈0.2, 0.5〉, δ(v2, v4) = 〈0.3, 0.4〉, δ(v2, v5) = 〈0.3, 0.4〉 ,

δ(v3, v4) = 〈0.2, 0.5〉 , δ(v3, v5) = 〈0.5, 0.7〉, δ(v4, v5) = 〈0.5, 0.5〉
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b b

b

bb

v1 〈0.5, 0.4〉

v5 〈0.6, 0.2〉 v4 〈0.6, 0.3〉

v2 〈0.6, 0.4〉

v3 〈0.5, 0.5〉

〈0.5, 0.2〉
〈0.3, 0.4〉

〈0.3, 0.4〉

〈0.5, 0.2〉

〈0.5, 0.3〉

〈0.5, 0.2〉

〈0.5, 0.2〉

〈0.2
, 0
.5〉〈0.3

, 0
.4〉

Figure 6.7: Intuitionistic fuzzy tree G

(ii) Eccentricity of each vertex is e(v1) = 〈0.5, 0.5〉, e(v2) = 〈0.5, 0.5〉, e(v3) =

〈0.5, 0.7〉, e(v4) = 〈0.5, 0.5〉, e(v5) = 〈0.5, 0.7〉

(iii) Radius of G is 〈0.5, 0.5〉, diameter of G is 〈0.5, 0.7〉.

(iv) The central vertices C(G) is {v1, v2, v4}, That is r(G) = e(v1), r(G) = e(v2),

r(G) = e(v4)

(v) The center of C(G) is displayed in Figure 6.8

⊗ ⊗

b

⊗b

v1 〈0.5, 0.4〉

v5 〈0.6, 0.2〉 v4 〈0.6, 0.3〉

v2 〈0.6, 0.4〉

v3 〈0.5, 0.5〉

〈0.5, 0.2〉

〈0.3
, 0
.4〉 〈0.3, 0.4〉

〈0.5, 0.2〉

〈0.5, 0.3〉

〈0.5, 0.2〉

〈0.5, 0.2〉

〈0.2
, 0.

5〉

〈0.3, 0.4〉

Figure 6.8: Center C(G)

(vi) The peripheral vertices of G are v3 and v5.
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6.3 Domination in intuitionistic fuzzy trees

Definition 6.3.1. [77] Let G = (V,E) be an IFG on V . Let u, v ∈ V , u is said

to dominate v in G if there exists a strong edge between them.

Definition 6.3.2. [77] A subset S of V is called a dominating set in G if for every

v ∈ V − S, there exists u ∈ S such that u dominates v.

Definition 6.3.3. [77] A dominating set S of an IFG is said to be a minimal

dominating set if no proper subset of S is a dominating set.

Definition 6.3.4. [77] Minimum cardinality among all minimal dominating set

is called lower domination number of G, and is denoted by d(G).

Maximum cardinality among all minimal dominating set is called upper domina-

tion number of G, and is denoted by D(G).

Definition 6.3.5. [77] Two vertices in an IFG, G = (V,E) are said to be inde-

pendent if there is no strong edge between them.

Definition 6.3.6. [77] A subset S of V is said to be independent set of G if

µij < µ∞ij and γij < γ∞ij for all vi, vj ∈ S. An independent set S of G in an IFG

is said to be maximal independent, if for every vertex vj ∈ V −S, the set S ∪{vj}

is not independent.

Definition 6.3.7. [77] The minimum cardinality among all maximal independent

set is called lower independence number of G, and it is denoted by i(G).

The maximum cardinality among all maximal independent set is called upper

independence number of G, and it is denoted by I(G).
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Definition 6.3.8. [77] Let G = (V,E) be an IFG without isolated vertices. A

subset D of V is a total dominating set if for every vertex vi ∈ V , there exists a

vertex vj ∈ D, vi 6= vj , such that vj dominates vi.

Definition 6.3.9. [77] The minimum cardinality of a total dominating set is

called total domination number of G, and it is denoted by dt(G).

Definition 6.3.10. [99] Let G be a connected IFG. A subset V ′ of V is called a

connected dominating set of G, if

(i) For every vj ∈ V - V ′, there exists vi ∈ V ′ such that µij ≥ µ∞ij and γij ≥ γ∞ij

(ii) The sub graph H = (V ′, E′) of G=(V,E) induced by V ′ is connected.

Definition 6.3.11. [99] The minimum cardinality of a connected dominating set

is called the connected domination number of G, and is denoted by dc(G).

Example 6.3.1. Consider an IFT, G = (V,E), in Figure 6.3 in Example 6.2.3

(i) The minimal dominating set of G is {v1, v4} and the domination number

d(G) is 0.9.

(ii) The maximal independent set of G is {v1, v4} and the independent domina-

tion number i(G) is 0.9.

(iii) The total dominating set of G is {v1, v4} and the total domination number

dt(G) is 0.9.

(iv) The connected dominating set of G is {v1, v2, v3} and the connected domi-

nation number dc(G) is 0.85
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Theorem 6.3.12. Let G = (V,E) is an IFT, then the distance between any two

vertices in V is metric.

Proof:

Let G = (V,E) is an IFT, it is connected. Then there exists a unique strong path

between any two vertices in V .

That is, δµi,µj ≥ 0, δγi,γj ≥ 0, which implies δ(vi, vj) ≥ 0 for every vi, vj ∈ V .

δµi,µi = 0, δγi,γi = 0, this implies that δ(vi, vj) = 0.

Next the reversal of a path from vivj is a path from vjvi and vice versa. That is,

δµi,µi = 0, δγi,γi = 0, implies that δ(vi, vj) = δ(vj , vi). Let P1 is a vi − vk path in

G such that δµi,µk =
∑

(vi,vk)∈P1

µik, δγi,γk =
∑

(vi,vk)∈P1

γik,and P2 be a vkvj path such

that δµk,µj =
∑

(vk,vj)∈P2

γkj , δγk,γj =
∑

(vk,vj)∈P2

γkj . The path P1 followed by P2 is

a vivj walk and since every walk contains one path, there exists a vivj path in G

whose length is at most δµi,µk + δµk,µj , δγi,γk + δγk,γj . Therefore, δµi,µj ≤ δµj ,µk +

δµk,µj , δγi,γj ≤ δγj ,γk + δγk,γj . This implies that δ(vi, vj) ≤ δ(vi, vk) + δ(vk, vj).

Hence the distance δ is a metric on V .

Theorem 6.3.13. For any IFT G = (V,E), the radius and diameter satisfy

rµ(G) ≤ diamµ(G) ≤ 2rµ(G) and rγ(G) ≤ diamγ(G) ≤ 2rγ(G).

Proof:

By the definition of radius and diameter rµ(G) ≤ diamµ(G) and rγ(G) ≤ diamγ(G).

Let vk be a central vertex and vi, vj be two peripheral vertices of G. Then

rµ(G) = eµ(vk), rγ(G) = eγ(vk and diamµ(G) = eµ(vi) ,diamγ(G) = eγ(vi)

diamµ(G) = eµ(vj) , diamγ(G) = eγ(vj).

By triangle inequality,

137



δµi,µj ≤ δµj ,µk + δµk,µj

= rµ(G) + rµ(G) = 2rµ(G)

δγi,γj ≤ δγj ,γk + δγk,γj ,

= rγ(G) + rγ(G) = 2rγ(G)

Therefore, rµ(G) ≤ diamµ(G) ≤ 2rµ(G) and rγ(G) ≤ diamγ(G) ≤ 2rγ(G).

Theorem 6.3.14. For any two vertices vi, vj in an IFTG = (V,E) , |eµ(vi)− eµ(vj)| ≤

δµi,µj and |eγ(vi)− eγ(vj)| ≤ δγi,γj .

Proof:

By the definition, of the eccentricity of a vertex vi in an IFT,

eµi = max
{
δµi,µj : vi ∈ V, vi 6= vj

}
and eγi = max

{
δγi,γj : vi ∈ V, vi 6= vj

}
Let vk

be a vertex farthest from vi such that eµi = δµi,µk and eγi = δγi,γk . Then by

triangle inequality eµi = δµi,µk ≤ δµi,µj + δµj ,µk for any vk of G. Therefore,

eµi ≤ δµi,µk + δµk,µj for any vk of G.

That is, eµi ≤ δµi,µj + eµj . since δµk,µj ≤ eµj

Therefore, eµi − eµk ≤ δµi,µk .

Interchanging the roles of vi and vj , we get eµj − eµi ≤ δµj ,µi , that is

−δµj ,µi ≤ eµi − eµj .

Combining of the above result −δµj ,µi ≤ eµi − eµj ≤ δµj ,µi .

Similarly, −δγj ,γi ≤ eγi − eγj ≤ δγj ,γi . Hence, |eµ(vi)− eµ(vj)| ≤ δµi,µj and

|eγ(vi)− eγ(vj)| ≤ δγi,γj .

Theorem 6.3.15. Let vi and vj be any two vertices in an IFT G = (V,E). Then

∣∣δµi,µk − δµk,µj

∣∣ ≤ δµi,µj ,
∣∣δγi,γk − δγk,µj

∣∣ ≤ δγi,γj , for all vk in V .

Proof:
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Let vi, vj be any two vertices in V . Since δ(vi, vj) is a metric

δµi,µj ≤ δµi,µk + δµk,µj and δγi,γj ≤ δγi,γk + δγk,γj

for all vk in V . Also δµk,µj ≤ δµk,µi + δµi,µj and δγk,γj ≤ δγk,γi + δγi,γj .

That is , δµi,µj ≥ δµk,µi − δµk,µj , δγi,γj ≥ δγk,γi − δγk,γj .

Combining the above results,

δµk,µi − δµk,µj ≤ δµi,µj ≤ δµk,µi + δµk,µj δγk,γi − δγk,γj ≤ δγi,γj ≤ δγk,γi + δγk,γj .

That is, −(δµk,µj −δµk,µk) ≤ δµi,µj ≤ δµk,µi+δµk,µj and −(δγk,γj −δγk,γk) ≤ δγi,γj ≤

δγk,γi + δγk,γj .

Therefore, δµi,µj ,
∣∣δγi,γk − δγk,µj

∣∣ ≤ δγi,γj , for all vk in V .

Theorem 6.3.16. Let G = (V,E) be an IFT on V ≥ 3. let ∈ (H) be the maxi-

mum cardinality of end vertices in any spanning forest H = (V ′, E′) in G , then

dc = o(G)− ∈ (H).

Proof:

Let H be spanning forest of G. Let X = {vi ∈ V ′, viis a end vertices of H}.

Clearly V −X is a connected dominating set of G and the cardinality of V −X

is o(G)− ∈ (H). Hence dc(G) ≤ o(G)− ∈ (H).

Now, let S be a connected dominating set of G. Let HS be any spanning forest

of the induced subgraph G[S]. Since S is a connected dominating set G, for each

vi in V − S, there exists a vertex vj in S such that µij ≥ µ∞ij and γij ≥ γ∞ij . Let

H be the subgraph adding the vertices of V − S and the edges vivj for each vi in

V − S. Clearly H is a spanning forest of G and ∈ (H) ≥ o(G)− dc(G).

Hence dc(G) = o(G)− ∈ (H).

Theorem 6.3.17. LetG = (V,E) be an IFT with V ≥ 3. Suppose that d(G−e) =
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d(G), where e is an strong edge of G. Then for each strong edge e = (vi, vj), there

exists a dominating set D satisfying one of the following

(i) vi, vj ∈ D

(ii) vi, vj ∈ V −D

(iii) If vi ∈ D and vj ∈ V − D, then there exists vk ∈ D − {vj} such that

µjk ≥ µ∞jk and γjk ≥ γ∞jk .

Proof:

Suppose there is no dominating setD in G satisfying any of the statements (i),(ii),

(iii). Then any dominating set D of G is not a dominating set of G− e. Further

any dominating set of G− e is a dominating set of G also. Hence, it follows that,

d(G− e) 6= d(G).

Theorem 6.3.18. In an IFT G = (V,E) the cut vertices are dominating set of

G.

Proof:

Let D be the dominating set of all dominating sets of G. Since every vertex in a

spanning subgraph is either cut vertex or end vertex. Then V − D is the set of

all end vertices of G. Then, for each vi ∈ V −D, there exists a strong neighbor

vj ∈ D. Hence each vi ∈ V − D, is dominated by some vj ∈ D. So D is a

dominating set of G.
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Theorem 6.3.19. If G = (V,E) is an IFT, then G is not complete.

Proof:

Suppose G be a complete IFG. Let H be spanning subgraph of G. Then µ∞ij = µij

and γ∞ij = γij for all vi, vj in V . Now G being a IFT, µij < µ∞ij and γij < γ∞ij

for all vi, vj not in H, whereH be spanning subgraph of G. Thus µ∞ij < µij and

γ∞ij < γij , contradicting the definition of complete IFG.

6.4 Intuitionistic fuzzy tree center-based clustering algo-

rithm

The objective of clustering is to classify the observations into groups such that

the degree of association is high among the members of a group and is less among

the members of other groups. Graph theoretical clustering is nothing but parti-

tioning the graph based on qualitative aspects of the data. Most of the clustering

methods group the data based on distance and similarity. Rosenfeld [86] intro-

duced distance based clustering on fuzzy graphs. Xu and Wu [112] developed an

intuitionistic fuzzy c-means algorithm to cluster IFSs, which is based on the well-

known fuzzy c-means clustering method and the basic distance measures between

IFSs such as the Hamming distance, normalized Hamming distance, Euclidean

distance and normalized Euclidean distance. Zhang and Chen [114] defined the

concept of intuitionistic fuzzy similarity matrix and presented a clustering method

based on λ-cutting matrix. Zhong Wang et al. [116] presented a netting method

to make cluster analysis of intuitionistic fuzzy sets. Zhao et al. [115] developed

an intuitionistic fuzzy minimum spanning tree clustering algorithm to deal with
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intuitionistic fuzzy information.

In this section, a new clustering method namely, intuitionistic fuzzy tree center-

based clustering method is proposed to classify the given crisp data set. The

intuitionistic fuzzification of the data set is obtained by S-shaped intuitionistic

fuzzification function. The classical similarity and distance measures are charac-

terized by real numbers. The proposed distance measure is an intuitionistic fuzzy

value. cluster center is not chosen randomly, but is obtained by using eccentricity

concept in IFTs. The computation procedure of this method is comparatively

easier. The proposed clustering algorithm is verified with a numerical data set.

Notations

Let V = {v1, v2, v3 . . . vn} be the data set of n objects to be clustered . Let

A = {A1, A2, A3 · · · , Am} is the set of m attributes for each object vi. The data

set is represented as a matrix G =
[
vpi
]
, i = 1, 2, 3 . . . , n, p = 1, 2, 3 . . . ,m. The

columns (i) of the matrix G indicate the set of n objects and rows (p) represent

as the number of numerical attributes of each data. The object vpi in the data

matrix represents ith object with pth attribute.

The entries of the data matrix G are of the form IG =
[〈
µpi , γ

p
i

〉]
n×m

, i =

1, 2, 3, . . . , n p = 1, 2, 3 . . . ,m where
〈
µpi , γ

p
i

〉
represents the degree of member-

ship and non-membership of ith object with pth attribute.

Definition 6.4.1. Let D = (dij)n×n be an intuitionistic fuzzy distance matrix,

where dij = 〈µij , γij〉 , i, j = 1, 2, 3, . . . n. Then (λ, δ)D = (λ, δ)dij =
〈
λµij , δγij

〉
is

called (λ, δ)-cutting matrix of D where (λ, δ) is the confidence level 0 ≤ λ, δ ≤
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1, 0 ≤ λ+ δ ≤ 1, and

(λ, δ)dij =





(1, 0) if µij ≥ λ, γij < δ

(0, 1) if µij < λ and γij ≥ δ

(6.1)

Definition 6.4.2. [114] Let α, β ∈ X1×n, where X1×n denotes the set of intuition-

istic fuzzy vectors. Then (α, β) = (max
{
min

{
µαi, µβi

}}
,min

{
max

{
γαi, γβi

}}
)

is called the inner product of α and β.

The step by step procedure of proposed intuitionistic fuzzy tree center based

algorithm is described here.

Algorithm

Step 1: Consider, V = (v1, v2, v3 · · · , vn), the set of n objects andA = {A1, A2, A3 · · · , Am}

is a set of m attributes in a data set. Form the data matrix G.

Step 2: The intuitioistic fuzzification for the data set of n objects is done as

follows:

The degree of membership µpi , is calculated using

µpi =





0 if vpi ≤ a

2
(
v
p
i −a
b−a

)2

− ǫ if a < vpi ≤ a+b
2

1− 2
(
v
p
i −b
b−a

)2

− ǫ if a+b
2 < vpi < b

1− ǫ if vpi ≥ b

(6.2)
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The degree of non-membership γpi is calculated by

γpi =





1− ǫ if vpi ≤ a

1− 2
(
v
p
i −a
b−a

)2

if a < vpi ≤ a+b
2

2
(
v
p
i −b
b−a

)2

if a+b
2 < vpi < b

0 if vpi ≥ b

(6.3)

where a, b , c are arbitrary constants.

Step 3: Calculate the distance between two objects using the formula

d(vi, vj) =





〈0, 1〉 , i = j
〈
1− 1

m

m∑

p=1

∣∣µpi − µpj
∣∣ , 1
m

m∑

p=1

∣∣γpi − γpj
∣∣
〉
,

i 6= j, i, j = 1, 2, · · · , n.

(6.4)

Form the IF distance matrix D = d(vi, vj)n×n

Step 4: Draw the IFT G = (V,E) with n vertices associated with the objects

vi in the data set V to be clustered. The distance d(vi, vj) is treated as the

membership and non-membership values of the edges.

Step 5: Compute the eccentricity of each data object vi ∈ V by using the formula

e(vi) = 〈eµi , eγi〉 = 〈max(dµ(vi, vj),max(dγ(vi, vj)〉.

Step 6: Calculate the radius as r(G) = 〈rµ(G), rγ(G)〉, where, rµ(G) = min

〈eµi : vi ∈ V 〉 and rγ(G) = min {eγi : vi ∈ V }.

Step 7: Compute center of G
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[i] e(vi), if rµ(G) = eµi and rγ(G) = eγi or the corresponding eµj of eγj = rγ(G)

is less than eµi .

[ii] e(vj), if rµ(G) = eµi and rγ(G) = eγj , the corresponding eµj of eγj = rγ(G)

is greater than or equal to eµi .

Step 8: Treat the center e(vi) obtained in Step 7 as (λ, δ)−cut.

Step 9: Calculate the (λ, δ)-cutting matrix on (λ, δ)d(vi,vj) using Definition 6.4.1.

Step 10: Calculate the inner products of the column vectors of the (λ, δ)d(vi,vj)-

cutting matrix. Then the objects are clustered based on the inner product values

(1, 1) or (1, 0) using Definition 6.4.2.

Step 11: Go to Step 6, repeat the process to get clusters.

6.5 Experimental analysis

The algorithm has been implemented and tested with datasets available in the

University of Cologne, Germany [119]. The data sets contain the nutrients in 27

different kinds of meat, fish or fowl with five attributes as food energy, protein,

fat, calcium and iron. The data set is divided into five disjoint subsets. The infor-

mation about the data set with 5 attributes is shown in Table 1. The intuitionistic

fuzzification of the data set is presented in Table 2.

Step wise algorithm

The steps involved to cluster the numerical data set with 27 nutrients and 5 at-

tributes.

Step 1. Consider the data set is given in Table 1 to produce cluster.
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Step 2. Compute the degree of membership and non-membership values for the

given data set using S-shape intuitionistic fuzzification function using equation 2,

3 are given in Table 2.

Step 3. Obtain IFT, by treating 27 nutrients as vertices vi, · · · , v27. The distance

between vi and vj is treated as the weight of eij . Calculate distance between the

objects vi, vj

Step 4. The eccentricities are given by

e(v1) = 〈0.9960, 0.6559〉 , e(v2) = 〈0.9358, 0.4994〉 ,

e(v3) = 〈0.8847, 0.6653〉 , e(v4) = 〈0.9771, 0.6739〉 ,

e(v5) = 〈0.9614, 0.4516〉 , e(v6) = 〈0.8838, 0.5522〉 ,

e(v7) = 〈0.9949, 0.4859〉 , e(v8) = 〈0.8329, 0.6653〉 ,

e(v9) = 〈0.9358, 0.5393〉 , e(v10) = 〈0.9266, 0.5928〉 ,

e(v11) = 〈0.9360, 0.6599〉 , e(v12) = 〈0.9847, 0.6513〉 ,

e(v13) = 〈0.9847, 0.6666〉 , e(v14) = 〈0.9353, 0.4003〉 ,

e(v15) = 〈0.9439, 0.4710〉 , e(v16) = 〈0.9486, 0.5089〉 ,

e(v17) = 〈0.9669, 0.6739〉 , e(v18) = 〈0.9669, 0.6717〉 ,

e(v19) = 〈0.9393, 0.5115〉 , e(v20) = 〈0.9393, 0.4524〉 ,

e(v21) = 〈0.9353, 0.4421〉 , e(v22) = 〈0.9298, 0.4815〉 ,

e(v23) = 〈0.9295, 0.3819〉 , e(v24) = 〈0.9298, 0.5129〉 ,

e(v25) = 〈0.7802, 0.6589〉 , e(v26) = 〈0.9949, 0.49907〉 ,

e(v27) = 〈0.9106, 0.5545〉.
Step 5. The radius is calculated as 〈0.7802, 0.3819〉

Step 6. The center is e23. Treat e23 as (λ, δ)-cut in the distance matrix d(vi, vj),

the clusters are obtained.
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If (λ, δ) = 〈0.9295, 0.3819〉, then the objects vi, 1 = 1, 2 . . . , 27 are fall into the

following eighteen categories:

{v1, v4, v10, v11, v12, v3},{v5, v7, v26},{v17, v18} ,{v22, v24} ,{v2} , {v3} , {v6} , {v8} ,

{v9} , {v14} , {v15} , {v16} , {v19} ,{v20} , {v21} , {v23} , {v25} , {v27}

If (λ, δ) = 〈0.9266, 0.5928〉, then the objects vi, 1 = 1, 2 . . . , 27 are fall into the

following seventeen categories:

{v1, v4, v10, v11, v12, v3},{v5, v7, v16, v26},{v17, v18} , {v22, v24} , {v2} , {v3} , {v6} ,

{v8} , {v9} , {v14} , {v15} , {v19} , {v20} , {v21} , {v23} , {v25} , {v27}

If (λ, δ) = 〈0.9106, 0.5545〉, then the objects vi, 1 = 1, 2 . . . , 27 are fall into the

following sixteen categories:

{v1, v4, v10, v11, v12, v3},{v5, v7, v16, v26},{v17, v18} , {v22, v24} , {v2, v9} , {v3} , {v6} ,

{v8} , {v14} , {v15} , {v19} , {v20} , {v21} , {v23} , {v25} , {v27}.

Results and Discussion

There are many clustering algorithm existing in the literature. The results of

the proposed algorithm is compared with only two algorithm namely Zhang et al.

[114] and netting method by Z.Wang et al.[116]. The derived results are compared

and presented in Table 3. Though, all the three methods produce same clusters,

the presented IFT center-based algorithm reduces the complexity of calculations

in forming equivalence matrix, which ultimately reduces the running time of the

algorithm.
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Table 1: Data set with 5 attributes and 27 objects

Objects Name of the
item

Food Energy
(Calories)A1

Protein
(Grams) A2

Fat (Grams)
A3

Calcium
(Mgs) A4

Iron
(Mgs)A5

v1 Beef braised 340 20 28 9 2.6

v2 Hamburger 245 21 17 9 2.7

v3 Beef roast 420 15 39 7 2.0

v4 Beef steak 375 19 32 9 2.6

v5 Beef canned 180 22 10 17 1.4

v6 Chicken broiled 115 20 3 8 3.7

v7 Chicken canned 170 25 7 12 1.5

v8 Beef Heart 160 26 5 14 6.9

v9 Lamp leg roast 265 20 20 9 2.6

v10 Lamb shoulder

roast

300 18 25 9 2.3

v11 Smoked ham 340 20 28 9 2.5

v12 Pork roast 340 19 29 9 2.5

v13 Pork simmered 355 19 30 9 2.4

v14 Beef tongue 205 18 14 7 2.5

v15 Veal cutlet 185 23 9 9 2.7

v16 Bluefish baked 135 22 4 25 0.6

v17 Clams raw 70 11 1 82 6.0

v18 Clams canned 45 7 1 74 5.4

v19 Crab meat

canned

90 14 2 38 0.8

v20 Haddock fried 135 16 5 15 0.5

v21 Mackerel

broiled

200 19 13 5 1.0

v22 Mackerel

canned

155 16 9 157 1.8

v23 Perch fried 195 16 11 14 1.3

v24 Salmon canned 120 17 5 159 0.7

v25 Sardines

canned

180 22 9 367 2.5

v26 Tuna canned 170 25 7 7 1.2

v27 Shrimp canned 110 23 1 98 2.6
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Table 2: Intuitionistic fuzzification of Data set

Objects Name the
item

Food Energy
(Calories)

A1

Protein
(Grams) A2

Fat
(Grams) A3

Calcium
(Milli

Grams) A4

Iron (Milli
Grams) A5

v1 Beef braised 〈0.9089, 0.0910〉 〈0.7806, 0.1994〉 〈0.8321, 0.1676〉 〈0.0002, 0.9998〉 〈0.2150, 0.7847〉
v2 Hamburger 〈0.5643, 0.4356〉 〈0.8415, 0.1386〉 〈0.3542, 0.6454〉 〈0.0002, 0.9998〉 〈0.2360, 0.7637〉
v3 Beef roast 〈0.999, 0〉 〈0.3346, 0.6454〉 〈0.9997, 0〉 〈0.0005, 0.9999〉 〈0.1096, 0.8901〉
v4 Beef steak 〈0.9711, 0.0288〉 〈0.7085, 0.2715〉 〈0.9318, 0.0679〉 〈0.0002, 0.9998〉 〈0.2150, 0.7847〉
v5 Beef canned 〈0.2591, 0.7408〉 〈0.8914, 0.0886〉 〈0.1119, 0.8878〉 〈0.0021, 0.9978〉 〈0.0393, 0.9604〉
v6 Chicken broiled 〈0.0696, 0.9303〉 〈0.7806, 0.1994〉 〈0.0052, 0.9944〉 〈0.0001, 0.9999〉 〈0.4997, 0.500〉
v7 Chicken canned 〈0.2221, 0.7777〉 〈0.9744, 0.005〉 〈0.0496, 0.9501〉 〈0.0007, 0.9993〉 〈0.0485, 0.9512〉
v8 Beef Heart 〈0.1880, 0.8119〉 〈0.9800, 0〉 〈0.0219, 0.9778〉 〈0.0012, 0.9988〉 〈0.9997, 0〉
v9 Lamp leg roast 〈0.6582, 0.3417〉 〈0.7806, 0.1994〉 〈0.4997, 0.500〉 〈0.0002, 0.9997〉 〈0.2150, 0.7847〉
v10 Lamb shoulder

roast
〈0.7951, 0.2048〉 〈0.6254, 0.3546〉 〈0.7282, 0.2715〉 〈0.0002, 0.9998〉 〈0.1579, 0.8418〉

v11 Smoked ham 〈0.9089, 0.0910〉 〈0.7806, 0.1994〉 〈0.8321, 0.1676〉 〈0.0002, 0.9998〉 〈0.1950, 0.8047〉
v12 Pork roast 〈0.9089, 0.0910〉 〈0.7085, 0.2714〉 〈0.8612, 0.1385〉 〈0.0002, 0.9998〉 〈0.1950, 0.8047〉
v13 Pork simmered 〈0.9398, 0.0601〉 〈0.7085, 0.2715〉 〈0.8875, 0.1122〉 〈0.0002, 0.9998〉 〈0.1760, 0.8237〉
v14 Beef tongue 〈0.3640, 0.359〉 〈0.6254, 0.3546〉 〈0.2338, 0.7659〉 〈0, 0.9999〉 〈0.1950, 0.8047〉
v15 Veal cutlet 〈0.2787, 0.7212〉 〈0.9301, 0.0499〉 〈0.0883, 0.9114〉 〈0.0002, 0.9998〉 〈0.2360, 0.7637〉
v16 Bluefish baked 〈0.1151, 0.8848〉 〈0.8914, 0.0886〉 〈0.0122, 0.9875〉 〈0.0060, 0.9939〉 〈0.0001, 0.9995〉
v17 Clams raw 〈0.0088, 0.9911〉 〈0.0686, 0.9114〉 〈0, 0.9997〉 〈0.0945, 0.9095〉 〈0.9601, 0.0395〉
v18 Clams canned 〈0, 0.9999〉 〈0, 0.9800〉 〈0, 0.9997〉 〈0.0727, 0.9273〉 〈0.8898, 0.1099〉
v19 Crab meat

canned
〈0.0287, 0.9712〉 〈0.2515, 0.7285〉 〈0.0010, 0.9986〉 〈0.0166, 0.9833〉 〈0.0041, 0.0056〉

v20 Haddock fried 〈0.1151, 0.8848〉 〈0.4287, 0.5512〉 〈0.0218, 0.9778〉 〈0.0015, 0.9984〉 〈0, 0.9997〉
v21 Mackerel

broiled
〈0.3415, 0.6583〉 〈0.7085, 0.2714〉 〈0.1991, 0.8005〉 〈0, 0.9999〉 〈0.0119, 0.9877〉

v22 Mackerel
canned

〈0.1720, 0.8279〉 〈0.4287, 0.5512〉 〈0.0883, 0.9113〉 〈0.3526, 0.6473〉 〈0.0822, 0.9174〉

v23 Perch fried 〈0.3199, 0.6800〉 〈0.4287, 0.5512〉 〈0.1382, 0.8614〉 〈0.0012, 0.9987〉 〈0.0310, 0.9688〉
v24 Salmon canned 〈0.0799, 0.92〉 〈0.5312, 0.4487〉 〈0.0218, 0.9778〉 〈0.3619, 0.6380〉 〈0.0016, 0.9980〉
v25 Sardines canned 〈0.2591, 0.7408〉 〈0.8913, 0.0886〉 〈0.0883, 0.9113〉 〈0.9999, 0〉 〈0.1950, 0.8046〉
v26 Tuna canned 〈0.2221, 0.7777〉 〈0.9744, 0.0055〉 〈0.0495, 0.9501〉 〈0, 0.9999〉 〈0.0236, 0.9760〉
v27 Shrimp canned 〈0.0599, 0.9399〉 〈0.9301, 0.0498〉 〈0, 0.9997〉 〈0.1319, 0.8679〉 〈0.2150, 0.7846〉
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Table 3: Comparisons of the derived results

Clus
ter

The results derived by center of IFT
method

Zhang et.al method [[114]] Zhong Wang et.al method[[116]]

1 {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v17, v18, v19, v20,
v21, v22, v23v24, v25, v26, v27},

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v17, v18, v19, v20,
v21, v22, v23v24, v25, v26, v27},

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v17, v18, v19, v20,
v21, v22, v23v24, v25, v26, v27},

2 {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v25, v26, v27}, {v17, v18}

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v25, v26, v27}, {v17, v18}

{v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v25, v26, v27}, {v17, v18}

3 {v1, v2, v3, v4, v5, v6, v7, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v25, v26, v27}, {v17, v18},{v8} -

{v1, v2, v3, v4, v5, v6, v7, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v25, v26, v27}, {v17, v18},{v8}

4 {v1, v2, v3, v4, v5, v6, v7, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v26, v27},{v17, v18},{v8},{v25}

{v1, v2, v3, v4, v5, v6, v7, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v26, v27},{v17, v18},{v8},{v25}

{v1, v2, v3, v4, v5, v6, v7, v9, v10, v11,
v12, v13, v14, v15, v16, v19, v20, v21, v22,
v23, v24, v26, v27},{v17, v18},{v8},{v25}

5 {v1, v2, v3, v4, v5, v6, v7, v9, v10, v11, v12,
v13, v14, v15, v16, v19, v20, v21, v23, v26,
v27},{v17, v18},{v8},{v25}{v22, v24}

{v1, v2, v3, v4, v5, v6, v7, v9, v10, v11, v12,
v13, v14, v15, v16, v19, v20, v21, v23, v26,
v27},{v17, v18},{v8},{v25}{v22, v24}

{v1, v2, v3, v4, v5, v6, v7, v9, v10, v11, v12,
v13, v14, v15, v16, v19, v20, v21, v23, v26,
v27},{v17, v18},{v8},{v25}{v22, v24}

6 {v1, v2, v4, v5, v6, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3}

{v1, v2, v4, v5, v6, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8}, {v25},{v22, v24},{v3}

{v1, v2, v4, v5, v6, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3}

7 {v1, v2, v4, v5, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3},
{v6}

{v1, v2, v4, v5, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3},
{v6}

{v1, v2, v4, v5, v7, v9, v10, v11, v12, v13,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3},
{v6}

8 {v1, v4, v10, v11, v12, v13},{v2, v5, v7, v9,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3},
{v6}

-

{v1, v4, v10, v11, v12, v13},{v2, v5, v7, v9,
v14, v15, v16, v19, v20, v21, v23, v26, v27},
{v17, v18},{v8},{v25},{v22, v24},{v3},
{v6}

9 {v1, v4, v10, v11, v12, v13}, {v5, v7, v14, v15,
v16, v19, v20, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9}

{v1, v4, v10, v11, v12, v13}, {v5, v7, v14, v15,
v16, v19, v20, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9}

{v1, v4, v10, v11, v12, v13}, {v5, v7, v14, v15,
v16, v19, v20, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9}

10 {v1, v4, v10, v11, v12, v13}, {v5, v7,
v14, v15, v16, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9}, {v19, v20}

{v1, v4, v10, v11, v12, v13}, {v5, v7,
v14, v15, v16, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9}, {v19, v20}

{v1, v4, v10, v11, v12, v13}, {v5, v7,
v14, v15, v16, v21, v23, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9}, {v19, v20}

11 {v1, v4, v10, v11, v12, v13}, {v5, v7, v14,
v15, v16, v21, v26, v27},{v17, v18},{v8},
{v25}, {v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}

{v1, v4, v10, v11, v12, v13}, {v5, v7, v14,
v15, v16, v21, v26, v27},{v17, v18},{v8},
{v25}, {v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}

{v1, v4, v10, v11, v12, v13}, {v5, v7, v14,
v15, v16, v21, v26, v27},{v17, v18},{v8},
{v25}, {v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}

12 {v1, v4, v10, v11, v12, v13}{v5, v7, v16, v21,
v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9},{v19, v20},{v23}, {v14, v15}

-

{v1, v4, v10, v11, v12, v13},{v5,
v7, v16, v21, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9},{v19, v20},{v23}, {v14, v15}

13 {v1, v4, v10, v11, v12, v13},{v5,
v7, v16, v21, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9},{v19, v20},{v23}, {v14}, {v15}

{v1, v4, v10, v11, v12, v13},{v5,
v7, v16, v21, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9},{v19, v20},{v23}, {v14}, {v15}

{v1, v4, v10, v11, v12, v13},{v5,
v7, v16, v21, v26, v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},
{v2, v9},{v19, v20},{v23}, {v14}, {v15}

14 {v1, v4, v10, v11, v12, v13}{v5, v7, v16, v26,
v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}, {v14}, {v15},{v21}

{v1, v4, v10, v11, v12, v13}{v5, v7, v16, v26,
v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}, {v14}, {v15},{v21}

{v1, v4, v10, v11, v12, v13}{v5, v7, v16, v26,
v27},{v17, v18},
{v8},{v25},{v22, v24},{v3},{v6},{v2, v9},
{v19, v20},{v23}, {v14}, {v15},{v21}
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Table 3: Comparisons of the derived results

Clus
ter

The results derived by center of IFT
method

Zhang et.al method [[114]] Zhong Wang et.al method[[116]]

15 {v1, v4, v10, v11, v12, v13}, {v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6}, {v2, v9},{v19, v20},{v23},
{v14}, {v15},{v21},{v27}

-

{v1, v4, v10, v11, v12, v13}, {v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6}, {v2, v9},{v19, v20},{v23},
{v14}, {v15},{v21},{v27}

16 {v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6}, {v2, v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

{v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6}, {v2, v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

{v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6}, {v2, v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

17 {v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

{v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

{v1, v4, v10, v11, v12, v13},{v5, v7, v16,
v26},{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27}

18 {v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22, v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

19 {v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v10, v11, v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

20 {v1, v4, v10, v11},{v12, v13},{v5, v7,
v26},{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

-

{v1, v4, v10, v11},{v12, v13},{v5, v7,
v26},{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

21 {v1, v4, v11},{v10},{v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v11},{v10},{v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v11},{v10},{v12, v13},{v5, v7, v26},
{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

22 {v1, v4, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

{v1, v4, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17, v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

23 {v1, v4, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

-

{v1, v4, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16}

24 {v1, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

{v1, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

{v1, v11},{v10},{v12, v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

25 {v1, v11},{v10},{v12},{v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

-

{v1, v11},{v10},{v12},{v13},{v5},{v7,
v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

26 {v1, v11},{v10},{v12},{v13},{v5},{v7},
{v26},{v17},{v18},{v8},{v25},{v22},
{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

{v1, v11},{v10},{v12},{v13},{v5},{v7},
{v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

{v1, v11},{v10},{v12},{v13},{v5},{v7},
{v26},{v17},{v18},{v8},{v25},{v22},{v24},
{v3},{v6},{v2},{v9},{v19},{v20},{v23},
{v14}, {v15},{v21},{v27},{v16},{v4}

151



Chapter 7

Chromatic values of intuitionistic

fuzzy directed hypergraph

colorings

7.1 Introduction

Fuzzy sets (FSs) introduced by L.A.Zadeh in 1965 [110] are generalization of crisp

sets. K.T.Atanassov introduced the concept of intuitionistic fuzzy sets (IFSs) in

1999 [9] as an extension of FSs. These sets include not only the membership of

the set but also the non-membership of the set along with degree of uncertainity.

In order to expand the application base, the notion of graph was generalized to

that of a hypergraph. In 1976, Berge [28] introduced the concepts of graph and

hypergraph. This paper contains a few extensions of concepts in fuzzy hypergraphs

by John N. Mordeson and Premchand S. Nair [65].

The chapter has been organised as follows: Section 2 deals with the definitions of

fuzzy hypergraph, intuitionistic fuzzy hypergraph, IFDHG and the notations used

in this paper. In section 3 and 4, a study is made on core aggregate of IFDHG,
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conservative K− coloring of intuitionistic fuzzy directed hypergraph, chromatic

values of intuitionistic fuzzy colorings, elementary center of intuitionistic fuzzy

coloring, f -chromatic value of intuitionistic fuzzy coloring, intersecting IFDHG,

K− intersecting IFDHG, strongly intersecting IFDHG. Some properties of the

newly proposed hypergraph concepts are also discussed. Section 5 concludes the

chapter.

7.2 Notations and Preliminaries

The notations used in this work are listed below:

H = (V,E) - IFDHG with vertex set V and edge set E

µ(vi), ν(vi) - degrees of membership and non-membership of the vertex

µij , νij - degrees of membership and non-membership of the edges

µij(vi), νij(vi) - degrees of membership and non-membership of the edges containing vi

h(H) - height of a hypergraph H

F (H) - Fundamental sequence of H

C(H) - Core set of H

H(ri,si) - (ri, si) - level intuitionistic fuzzy hypergraph

IFp(v) - intuitionistic fuzzy power set of V .
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In this section, definitions of intuitionistic fuzzy hypergraph, IFDHG are dealt

with.

Definition 7.2.1. [9] The five Cartesian products of two IFSs V1, V2 of V over E

is defined as

V1 ×1 V2 = {〈(v1, v2) , µ1.µ2, ν1.ν1〉|v1 ∈ V1, v2 ∈ V2},

V1 ×2 V2 = {〈(v1, v2) , µ1 + µ2 − µ1µ2, ν1.ν2〉|v1 ∈ V1, v2 ∈ V2},

V1 ×3 V2 = {〈(v1, v2) , µ1.µ2, ν1 + ν2 − ν1.ν2〉|v1 ∈ V1, v2 ∈ V2},

V1 ×4 V2 = {〈(v1, v2) ,min(µ1, µ2),max(ν1, ν2)〉|v1 ∈ V1, v2 ∈ V2},

V1 ×5 V2 = {〈(v1, v2) ,max(µ1, µ2),min(ν1, ν2)〉|v1 ∈ V1, v2 ∈ V2},

V1 ×6 V2 = {〈(v1, v2) , µ1+µ2

2 , ν1+ν2
2 〉|v1 ∈ V1, v2 ∈ V2}.

It must be noted that vi ×s vj is an IFS, where s = 1, 2, 3, 4, 5, 6.

Definition 7.2.2. [9] Let E be the fixed set and V = {〈vi, µi(vi), νi(vi)〉|vi ∈ V }

be an IFS. Six types of cartesian products of n subsets1 V1, V2, · · · , Vn of V over

E are defined as

V1 ×1 V2 ×1 V3...×1 Vn = {〈(v1, v2, · · · , vn) ,
n∏

i=1

µi,
n∏

i=1

νi〉

|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn},

Vi1 ×2 Vi2 ×2 Vi3 ...×2 Vin = {〈(v1, v2, · · · , vn) ,
n∑

i=1

µi −
∑
i 6=j

µiµj+

∑
i 6=j 6=k

µiµjµk − · · ·+ (−1)n−2
∑

i 6=j 6=k···6=n

µiµjµk · · ·µn+

(−1)n−1
n∏

i=1

µi,
n∏

i=1

νi〉|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}

1subsets - crisp sense
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Vi1 ×3 Vi2 ×3 Vi3 ...×3 Vin = {〈(v1, v2, · · · , vn) ,
n∏

i=1

µi,
n∑

i=1

νi −
∑
i 6=j

νiνj+

∑
i 6=j 6=k

νiνjνk − · · ·+ (−1)n−2
∑

i 6=j 6=k···6=n

νiνjνk · · · νn+

(−1)n−1
n∏

i=1

νi〉|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}

V1 ×4 V2 ×4 V3...×4 Vn = {〈(v1, v2, · · · , vn) ,min(µ1, µ2, · · · , µn),

max(ν1, ν2, · · · , νn)〉|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}

V1 ×5 V2 ×5 V3...×5 Vn = {〈(v1, v2, · · · , vn) ,max(µ1, µ2, · · · , µn),

min(ν1, ν2, · · · , νn)〉|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}.

V1 ×6 V2 ×6 V3...×6 Vn = {〈(v1, v2, · · · , vn) ,
n∑

i=1

µi

n ,

n∑
i=1

νi

n 〉

|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}.

It must be noted that vi ×s vj is an IFS, where s = 1, 2, 3, 4, 5, 6.

Definition 7.2.3. [53] An intuitionistic fuzzy graph (IFG) is of the form G =

〈V,E〉 where (i)V = {v1, v2, ...vn} such that µi : V → [0, 1] and νi : V → [0, 1]

denote the degrees of membership and non-membership of the vertex vi ∈ V

respectively and

0 ≤ µi(vi) + νi(vi) ≤ 1 (7.1)

for every vi ∈ V, i = 1, 2, ..., n(ii) E ⊆ V × V where µij : V × V → [0, 1] and

νij : V × V → [0, 1] are such that

µij ≤ µi ⊘ µj (7.2)

νij ≤ νi ⊘ νj (7.3)
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and

0 ≤ µij + νij ≤ 1 (7.4)

where µij and νij are the degrees of membership and non-membership of the edge

(vi, vj); the values of µi⊘µj and νi⊘νj can be determined by one of the cartesian

products ×s, s = 1, 2, ..., 6 for all i and j given in Definition 7.2.2.

Note:

Throughout this paper, it is assumed that the fifth Cartesian product in Definition

7.2.2

V1 ×5 V2 ×5 V3...×5 Vn = {〈(v1, v2, · · · , vn) ,max(µ1, µ2, · · · , µn),

min(ν1, ν2, · · · , νn)〉|v1 ∈ V1, v2 ∈ V2, · · · , vn ∈ Vn}.

is used to determine the degrees of membership µij and non-membership νij of

the edge eij .

Definition 7.2.4. [79] An intuitionistic fuzzy hypergraph (IFHG) is an ordered

pair H = (V,E) where

(i) V = {v1, v2, ..., vn}, is a finite set of intuitionistic fuzzy vertices,

(ii) E = {E1, E2, ..., Em} is a family of crisp subsets of V ,

(iii) Ej = {(vi, µj(vi), νj(vj)) : µj(vi), νj(vi) ≥ 0 and µj(xi) + νj(xi) ≤ 1}, j =

1, 2, ...,m,

(iv) Ej 6= φ, j = 1, 2, ...,m,

(v)
⋃

j supp(Ej) = V, j = 1, 2, ...,m.

Here, the hyperedges Ej are crisp sets of intuitionistic fuzzy vertices, µj(vi) and
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νj(vi) denote the degrees of membership and non-membership of vertex vi to

edge Ej . Thus, the elements of the incidence matrix of IFHG are of the form

(vij , µj(vi), νj(vj)). The sets (V,E) are crisp sets.

Notations:

1. Hereafter,〈µ(vi), ν(vi)〉 or simply 〈µi, νi〉 denote the degrees of membership and

non-membership of the vertex vi ∈ V , such that 0 ≤ µi + νi ≤ 1.

2. 〈µ(vij), ν(vij)〉 or simply 〈µij , νij〉 denote the degrees of membership and non-

membership of the edge (vi, vj) ∈ V × V , such that 0 ≤ µij + νij ≤ 1. Also µij

is the degrees of membership of ith vertex in jth edge and νij is the degrees of

non-membership of ith vertex in jth edge.

Note:

The support of an IFS V in E is denoted by supp(Ej) = {vi/µij(vi) > 0 and

νij(vi) > 0}.

Definition 7.2.5. [78] An intuitionistic fuzzy directed hypergraph (IFDHG) H

is a pair (V,E), where V is a non - empty set of vertices and E is a set of

intuitionistic fuzzy hyperarcs; an intuitionistic fuzzy hyperarc Ei ∈ E is defined

as a pair (t (Ei) , h (Ei)), where t (Ei) ⊂ V , with t (Ei) 6= φ, is its tail, and

h (Ei) ∈ V − t (Ei) is its head. A vertex s is said to be a source vertex in H if

h (Ei) 6= s, for every Ei ∈ E. A vertex d is said to be a destination vertex in H if

d 6= t (Ei), for every Ei ∈ E.

Definition 7.2.6. [67] Let H be an IFDHG, for 0 < (ri, si) ≤ h(H), let Hri,si =

(V ri,si , Eri,si) be the (ri, si) - level intuitionistic fuzzy directed hypergraph of H.

The sequence of real numbers {r1, r2, ..., rn; s1, s2, ..., sn}, such that 0 ≤ ri ≤
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hµ(H) and 0 ≤ si ≤ hν(H), satisfying the properties:

(i) If r1 < α ≤ 1 and 0 ≤ β < s1 then Eα,β = φ,

(ii) If ri+1 ≤ α ≤ ri ; si ≤ β ≤ si+1 then Eα,β = Eri,si ,

(iii) Eri,si ⊏ Eri+1,si+1

is called the fundamental sequence of H, and is denoted by F (H).

The core set ofH is denoted by C(H) and is defined by C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}.

The corresponding set of (ri, si) - level hypergraphsH
r1,s1 ⊂ Hr2,s2 ⊂ .... ⊂ Hrn,sn

is called the H induced fundamental sequence and is denoted by I(H). The (rn, sn)

level is called the support level of H and the Hrn,sn is called the support of H.

Definition 7.2.7. [67] LetH be an IFDHG and C(H) = {Hr1s1 , Hr2,s2 , ....Hrn,sn}.

H is said to be ordered if C(H) is ordered. That is Hr1,s1 ⊂ Hr2,s2 ⊂ ... ⊂ Hrn,sn .

The intuitionistic fuzzy directed hypergraph is said to be simply ordered if the

sequence {Hri,si/i = 1, 2, 3..., n} is simply ordered, that is if it is ordered and if

whenever E ∈ Hri+1,si+1 −Hri,si then E 6⊆ Hri,si .

Definition 7.2.8. Aminimal intuitionistic fuzzy transversal T forH is a transver-

sal of H with the property that if T1 ⊂ T , then T1 is not an intuitionistic fuzzy

transversal of H.

7.3 Coloring of intuitionistic fuzzy directed hypergraphs

Throughout this section, H refers to an IFDHG H = (V,E).

Definition 7.3.1. Let H be an IFDHG. A primitive p-coloring A of H is a

partition {A1, A2, A3, ....Ap} of V into p-subsets (colors) such that the support of
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each intuitionistic fuzzy hyperedge of H intersects atleast two colors of A, except

spike edges.

Definition 7.3.2. Let H be an IFDHG. Let C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}.

An K-coloring A ofH is a partition {A1, A2, A3, ....Ap} of V into p-subsets (colors)

such that A induces a coloring for each core hypergraph Hri,si of H with Hri,si =

(Vi, Ei) where Vi ⊂ V and Ei ⊂ E. The restriction of A to Vi, {A1 ∩ Vi, A2 ∩

Vi, A3 ∩ Vi, ....Ak ∩ Vi}, is coloring of {Hri,si}. (Allow color set Ai to be empty).

Example 7.3.1. Consider an IFDHG, H with V = {v1, v2, v3, v4, v5} and E =

{E1, E2, E3, E4} whose adjacency matrix as follows:

H =




E1 E2 E3 E4

v1 〈0.8, 0〉 〈0.8, 0〉 〈0, 1〉 〈0, 1〉

v2 〈0.8, 0〉 〈0.8, 0〉 〈0.8, 0〉 〈0, 1〉

v3 〈0.7, 0.1〉 〈0, 1〉 〈0, 1〉 〈0.7, 0.1〉

v4 〈0, 1〉 〈0, 1〉 〈0.6, 0.3〉 〈0.6, 0.3〉

v5 〈0.3, 0.2〉 〈0.3, 0.2〉 〈0, 1〉 〈0, 1〉




The IF core hypergraphs of H are as follows:

H0.8,0 = {{v1, v2}, {v2}}

H0.7,0.1 = {{v1, v2, v3}, {v1, v2}, {v2}, {v3}}

H0.6,0.3 = {{v1, v2, v3}, {v1, v2}, {v2, v4}, {v3, v4}}

H0.3,0.2 = {{v1, v2, v3, v5}, {v1, v2, v5}, {v2, v4}, {v3, v4}}

The corresponding graph is shown in Figure 7.1.

Suppose A = {{v1, v2}, {v4}, {v3, v5}}
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Figure 7.1: Intuitionistic fuzzy directed hypergraph

Then A is a coloring of H0.6,0.3 and H0.3,0.2 but not H0.8,0. Hence A is a

K−coloring of H with intensity 〈0.8, 0〉

Definition 7.3.3. The p-chromatic number of an IFDHG H is the minimal num-

ber χp(H), of colors needed to produce a primitive coloring of H. The chromatic

number of H is the minimal number, χ(H), of colors needed to produce a K-

coloring of H.

Example 7.3.2. Consider an IFDHG, H where V = {v1, v2, v3, v4, v5, v6} and

E = {E1, E2, E3, E4, E5, E6, E7} with adjacency matrix as below:




E1 E2 E3 E4 E5 E6 E7
v1 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
v2 〈0.6, 0.3〉 〈0, 1〉 〈0, 1〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0, 1〉
v3 〈0, 1〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0, 1〉 〈0, 1〉 〈0, 1〉
v4 〈0.5, 0.2〉 〈0, 1〉 〈0, 1〉 〈0.5, 0.2〉 〈0.5, 0.2〉 〈0.5, 0.2〉 〈0.5, 0.2〉
v5 〈0, 1〉 〈0.3, 0.1〉 〈0, 1〉 〈0, 1〉 〈0.3, 0.1〉 〈0, 1〉 〈0.3, 0.1〉
v6 〈0, 1〉 〈0, 1〉 〈0.2, 0.1〉 〈0, 1〉 〈0, 1〉 〈0.2, 0.1〉 〈0.2, 0.1〉
v7 〈0, 1〉 〈0.5, 0.2〉 〈0.5, 0.2〉 〈0, 1〉 〈0.5, 0.2〉 〈0, 1〉 〈0, 1〉




The corresponding graph is shown in Figure 7.2.

Then C(H) = {Hri,si = (V ri,si , Eri,si)|i = 1, 2, 3, 4} where

〈r1, s1〉 = 〈0.6, 0.3〉; 〈r2, s2〉 = 〈0.5, 0.2〉; 〈r3, s3〉 = 〈0.3, 0.1〉; 〈r4, s4〉 = 〈0.2, 0.1〉

E1 = {{v1, v2}, {v1, v3}, {v2, v3}}
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Figure 7.2: Intuitionistic fuzzy directed hypergraph with (a)χ(Hr2,s2) = 2 and

(b)χ(Hr3,s3) = 3

E2 = {{v1, v2, v4}, {v1, v3, v7}, {v2, v3, v4}, {v2, v4, v7}}

E3 = {{v1, v2, v4}, {v1, v3, v5, v7}, {v1, v3, v7}, {v2, v3, v4}, {v2, v4, v5}, {v2, v4}, {v4, v5}}

E4 = {{v1, v2, v4}, {v1, v3, v5, v7}, {v1, v3, v6, v7}, {v2, v3, v4}, {v2, v4, v5, v7},

{v2, v4, v6}, {v4, v5, v6}}

Consider Hr1,s1 . Suppose {A1, A2} is a coloring of Hr1,s1 . Then {v1, v2} ∩ Ai 6=

∅, {v1, v3} ∩ Ai 6= ∅, {v2, v3} ∩ Ai 6= ∅ for i = 1, 2.

Hence A1 ∩ A2 6= ∅, a contradiction. Thus χ(Hr1,s1) = 3.

{{v1, v2, v3}, {v4, v5, v6, v7}} is a coloring for Hr2,s2 , so χ(Hr2,s2) = 2

For Hr3,s3 , since E ⊆ V, |E| = 3. Hence χ(Hr3,s3) = 3 and χ(Hr4,s4) = 3.

Definition 7.3.4. A spike reduction of Ei ∈ F℘(V ), denoted by Ẽ, is defined as

Ẽ(vi) = maxi{〈ri, si〉/
∣∣Eri,si

i

∣∣ ≥ 2, (0 ≤ ri ≤ Eµ(vi), 0 ≤ si ≤ Eν(vi))}.

Note: i) If A = φ, then Ẽ(vi) = 0.

(ii) If Ei is spike, then Ẽ = χ0
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Definition 7.3.5. Let H be an IFDHG and let H̃ = (Ṽ , Ẽ), where Ẽ = {Ẽi|Ei ∈

E} and Ṽ =
⋃

Ẽi∈Ẽ supp(Ẽ).

Example 7.3.3. Consider example 7.3.2, (E7)
0.5,0.2 = {v4}. Hence Ẽ7(v1) =

Ẽ7(v2) = Ẽ7(v3) = 0 and Ẽ7(v4) = Ẽ7(v5) = Ẽ7(v6) = Ẽ7(v7) = (0.2, 0.1). It is

clear that Ẽ7 6= E7. Since Ẽ7 6= ∅, E7 is not a spike.

Note: If each intuitionistic fuzzy hyperedge is spike, then Ẽ = ∅. Hence H̃ is not

an IFDHG. Thus this concept cannot be proceeded in real coloring problem. So

excluding it from further consideration and always proceed by assuming H̃ exists.

Theorem 7.3.6. If H is an ordered IFDHG and A is a primitive coloring of H,

then A is a K-coloring of H.

Proof. Since H is an ordered IFDHG, from Definition 7.2.6, C(H) is also an

ordered IFDHG. That is, if C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}, then Hr1,s1 ⊂

Hr2,s2 ⊂ ... ⊂ Hrn,sn .

Since A is a primitive coloring of H, there exists a partition of V into p-subsets

{A1, A2, A3, ....Ap} such that A induces a coloring for each core hypergraph, Hri,si

of H. Hence A is a K-coloring of H.

Theorem 7.3.7. LetH be an IFDHG and suppose C(H) = {Hri,si |i = 1, 2, 3...n},

where 0 ≤ ri ≤ hµ(H) and 0 ≤ si ≤ hν(H). If Hrn,sn is a simple IFDHG and sin-

gleton hyperedges do not appear in any core hypergraph of H and if each primitive

coloring A of H is a K-coloring of H, then H is an ordered IFDHG.
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Proof. It is known that Hri,si = (V ri,si , Eri,si) for 1 ≤ i ≤ n. Assume Hrn,sn

is simple and that H is not ordered. Then there exists a primitive coloring of H

that is not a K-coloring of H.

Construction:

Since H is not ordered, there exists some core hypergraph Hri,si , where i ≤ n−1,

such that some hyperedges E
′

i ∈ Ei is not an edge of Ej , j > i.

From definition 7.2.5, there is an intuitionistic fuzzy hyperedge Ei ∈ E such that

Eri,si
i = E

′

i. Let Ẽ
′

i = Eri+1,si+1

i and F = Ern,sn
i . Then E

′

i ⊂ Ẽ
′

i ⊆ F .

Since Hrn,sn is simple and F ∈ En, it follows that E
′

i /∈ En. Hence |E ′

i| ≥ 2.

Hence, there is a primitive coloring of H that is not a K-coloring of H.

Theorem 7.3.8. LetH be an ordered IFDHG and C(H) = {Hri,si |i = 1, 2, 3...n},

then χ(Hr1,s1) ≤ χ(Hr2,s2) ≤ · · · ≤ χ(Hrn,sn) = χ(H), where χ(Hri,si) represents

the minimal number of colors required to color the crisp hypergraph Hri,si .

Definition 7.3.9. Let H1 = (V1, E1) and H2 = (V2, E2) be a pair of IFDHGs

such that V1 ⊆ V2. Suppose A′ = {A1, A2, A3, ....Ap}, where
⋃p

i=1Ai = V1 and

Ai 6= ∅, for i = 1, 2, ...p is a K- coloring or (p-coloring) of H1. Then A
′′ is a stable

K-coloring or (p-coloring) extension of A′ to H2 if A′′ = {A′
1, A

′
2, A

′
3, ....A

′
p} is a

K-coloring or (p-coloring) of H2 which satisfies

i)
⋃p

i=1A
′
i = V2

ii) Ai ⊆ A′
i for i = 1, 2, ...p.
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7.4 Skeleton of transversals of intuitionistic fuzzy directed

hypergraph (Hs).

LetH be an IFDHG with fundamental sequence F (H) = {r1, r2, ..., rn; s1, s2, ..., sn}

where 0 ≤ ri ≤ hµ(H) and 0 ≤ si ≤ hν(H) and core set C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}.

Construction 1: The construction of Ĉ(H) from C(H) is a recursive process:

Step 1: Determine a IF partial hypergraph Ĥr1,s1 of Hr1,s1 by eliminating all the

IF hyperedge in Hr1,s1 that properly contain another edge of Hr1,s1 .

Step 2: Eliminate all IF hyperedges of Hr2,s2 which are either properly contained

another edge of Hr2,s2 or contains (properly or improperly) an IF hyperedges of

Ĥr2,s2 . Then either all edges of Hr2,s2 are eliminated or the remaining edges form

an IFDHG Ĥr2,s2 of Hr2,s2 .

Step i: For i = 1, 2, 3, ...k where 1 ≤ k ≤ n−1 and n ≥ 2 this process is repeated.

Step k+1: Eliminate all IF hyperedges of Hrk+1,sk+1 or contain an IF hyperedge

of Ĥri,si for i = 1, 2, 3....k (if k exists). Then, either all edges of Hrk+1,sk+1 are

eliminated (and Ĥrk+1,sk+1 does not exists) or the remaining IF hyperedges form

a partial hypergraph Ĥrk+1,sk+1 of Hrk+1,sk+1 . Continuing recursively upto n, we

obtain F̂ (H) = {rs1, rs2, ..., rsn; ss1, ss2, ..., ssn} of F (H). The IF coreset C(H) =

{Ĥrs1,s
s
1 , Ĥrs2,s

s
2 , ..., Ĥrsn,s

s
n} of IF partial hypergraph form C(H).

Note: Each member of Ĉ(H) has non-empty edge set and that for every 〈ri, si〉 ∈

F (H)\{rs1, rs2,

..., rsn; s
s
1, s

s
2, ..., s

s
n} the entire core hypergraph Hri,si was eliminated in the recur-

sive process.

Definition 7.4.1. The skeleton of H̃, denoted by H�, is defined as H� = (H̃)s.
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Theorem 7.4.2. Let H be an IFDHG and suppose for each H there exists a H̃,

then every p-coloring of H� is a K-coloring of H� and conversely.

Proof. Since H� is an ordered IFDHG, the result follows directly from Theorem

7.3.1.

Theorem 7.4.3. Let H be an IFDHG and there exists H̃, then every K− coloring

ofH is a color stable extension of some p-coloring ofH�. Conversely, any extended

K-coloring of H� without adding any color is a color stable extended K-coloring

of H.

Example 7.4.1. Consider an IFDHG, H with V = {v1, v2, v3, v4} and E =

{E1, E2, E3, E4, E5} whose adjacency matrix is as given below:

H =




E1 E2 E3 E4 E5
v1 〈0.9, 0〉 〈0.9, 0〉 〈0, 1〉 〈0, 1〉 〈0.9, 0〉
v2 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0, 1〉
v3 〈0, 1〉 〈0, 1〉 〈0.4, 0.2〉 〈0.4, 0.2〉 〈0.4, 0.2〉
v4 〈0, 1〉 〈0.3, 0.2〉 〈0, 1〉 〈0.3, 0.2〉 〈0.3, 0.2〉




The IF core hypergraphs are as follows:

〈r1, s1〉 = 〈0.9, 0〉; 〈r2, s2〉 = 〈0.7, 0.2〉; 〈r3, s3〉 = 〈0.4, 0.2〉; 〈r4, s4〉 = 〈0.3, 0.2〉

H0.9,0 = {{v1}}

H0.7,0.2 = {{v1, v2}, {v2}}

H0.4,0.2 = {{v1, v2}, {v2, v3}, {v1, v3}}

H0.3,0.2 = {{v1, v2}, {v1, v2, v4}, {v2, v3}, {v2, v3, v4}{v1, v3, v4}}

No edge of Hr1,s1 properly contains another edge of Hri,si . Hence Ĥri,si = Hri,si .

For Hr2,s2 , {v1, v2} ⊇ {v1}. Thus, removing {v1, v2} from Er2,s2 gives {v2}. Hence

Ĥr2,s2 = {v2}. For Hr3,s3 , {v2, v3} ⊇ {v2}. Removing edges which are properly
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contained in Ĥr2,s2 gives Ĥr3,s3 = {v1, v3}.

It follows that 〈r1s, s1s〉 = 〈r1, s1〉; 〈r2s, s2s〉 = 〈r2, s2〉 and 〈r3s, s3s〉 = 〈r3, s3〉.

Then Hs = (V s, Es) where V s = {v1, v2, v3, v4} and Es = {{v1}, {v2}, {v1, v3}}

Example 7.4.2. In Example 7.3.1, H̃ = H and so H� = Hs. Every K-coloring

of H is a color stable extension of some K-coloring of H�. But every K-coloring

of H� is a K-coloring of H. Since E1 = {{v1}} = Es
1, E

s
2 = {{v2}} and E2 =

Es
2 ∪ {v1, v2}.

Example 7.4.3. Let H be an IFDHG. In Example 7.4.1, Hs = (V s, Es) where

V s = {v1, v2, v3, v4, v5} and Es = {{v1}, {v2}, {v1, v3}}. Hence {{v1}, {v2}, {v1, v3}}

areK- coloring ofHs. Clearly chromatic number χ(Hs) = 2. Note that {v1, (0.9, 0)}

and {v2, (0.7, 0.2)} are spikes in Hs.

Consider spike reduction, H̃ = (Ṽ , Ẽ) where Ṽ = {v1, v2, v3, v4} and Ẽ = {E1, E2, E3, E4, E5}

which is represented by the adjacency matrix in Example 7.4.1:

Thus

H̃0.9,0 = {{v1}}

H̃0.7,0.2 = {{v1, v2}, {v2}}

H̃0.4,0.2 = {{v1, v2}, {v2, v3}, {v1, v3}}

H̃0.3,0.2 = {{v1, v2}, {v1, v2, v4}, {v2, v3}, {v2, v3, v4}{v1, v3, v4}}

ThenH� = H̃s = (V �, E�) where V � = {v1, v2, v3, v4, v5} and E� = {{v1}, {v2}, {v1, v3}}.

Hence {{v1}, {v2}, {v1, v3}} are K-coloring of H�. Clearly χ(H�) = 2.
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7.5 Chromatic values of intuitionistic fuzzy colorings

Definition 7.5.1. Let H = (V,E) be an intuitionistic fuzzy directed hyper-

graph(IFDHG). The lower truncation Hl ofH at (rl, sl)- level, 0 < rl ≤ hµ(H), 0 <

sl ≤ hν(H), where rl < µi, sl < νi, forall vi, is an IFDHG,Hl = 〈Vt, Et, µtl(eij), νtl(eij)〉,

where Vt ⊂ V and Et ⊂ E denote the sets of vertices and edges of truncated

IFDHG respectively and

µtl(eij) =





µij if µij ≥ rl

0 otherwise

νtl(eij) =





νij if νij ≤ sl

1 otherwise

are the membership and non-membership values of the edge eij .

The upper truncation Hu of H at (ru, su)- level, 0 < ru ≤ hµ(H), 0 < su ≤ hν(H),

where ru < µi, su < νi, forall vi, is an IFDHG, Hu = 〈Vt, Et, µtu(eij), νtu(eij)〉,

where Vt ⊂ V and Et ⊂ E denote the sets of vertices and edges of truncated

IFDHG respectively and

µtu(eij) =





µij if µij ≥ ru

0 otherwise

νtu(eij) =





νij if νij ≤ su

1 otherwise

are the membership and non-membership values of the edge eij .

Note: µtl , µtu are degrees of membership values of lower and upper truncation,
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νtl , νtu are degrees of non-membership values of lower and upper truncation.

Example 7.5.1. Consider an IFDHG, H with the adjacency matrix as given be-

low:

H =




E1 E2 E3

v1 〈0.7, 0.3〉 〈0, 1〉 〈0.7, 0.3〉

v2 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0, 1〉

v3 〈0, 1〉 〈0.5, 0.2〉 〈0, 1〉

v4 〈0, 1〉 〈0, 1〉 〈0.3, 0.3〉

v5 〈0.6, 0.2〉 〈0.6, 0.2〉 〈0.6, 0.2〉




The corresponding graph of IFDHG H is displayed in Figure 7.3.

b

b

b b

b

v1

v2

v3

v4

v5
(0.7, 0.3)

(0.6, 0.2)

(0.7, 0.3)

(0.
7,
0.3

)

(0.6, 0.3)

(0.6, 0.2)(0.5, 0.2)

(0.3, 0.3)

Figure 7.3: Intuitionistic fuzzy directed hypergraph H
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The adjacency matrix of lower truncation of H(0.6,0.3) is given by

H =




E1 E2 E3

v1 〈0.7, 0.3〉 〈0, 1〉 〈0.7, 0.3〉

v2 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0, 1〉

v3 〈0, 1〉 〈0, 1〉 〈0, 1〉

v4 〈0, 1〉 〈0, 1〉 〈0, 1〉

v5 〈0, 1〉 〈0, 1〉 〈0, 1〉




The adjacency matrix of upper truncation of H(0.6,0.3) is given by

H =




E1 E2 E3

v1 〈0, 1〉 〈0, 1〉 〈0, 1〉

v2 〈0, 1〉 〈0, 1〉 〈0, 1〉

v3 〈0, 1〉 〈0.5, 0.2〉 〈0, 1〉

v4 〈0, 1〉 〈0, 1〉 〈0.3, 0.3〉

v5 〈0, 1〉 〈0, 1〉 〈0, 1〉




The graphs of lower and upper truncations are given in Figure 7.4:
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(0.7, 0.3)

(0
.7
, 0
.3
)

(0.6, 0.3)

(0.6, 0.2)(0.5, 0.2)

(0.3, 0.3)

v1

v2

v3
v5

v4

(0.7, 0.3)

(0.6, 0.3)

(0.6, 0.2)

(0.5, 0.2)

(0.3, 0.3)

(a)

(b)

Figure 7.4: (a) Lower Truncation of H(0.6,0.3) and (b) Upper Truncation of

H(0.6,0.3)

.

Note:

1. Hl ∪Hu ⊆ H.

2. Hl ∩Hu = φ.

Definition 7.5.2. LetH be an IFDHG with core set C(H) = {Hri,si = (V ri,si , Eri,si)/i =

1, 2, ...n} where E(Hri,si) = Ei is the crisp edge set of the core hypergraph

Hri,si . Let E(H) denote the crisp edge set of H defined by E(H) = ∪{Ei/Ei =

E(Hri,si);Hri,si ∈ C(H)}. E(H), a crisp hypergraph on V , is called core aggregate

hypergraph of H and is denoted by H(H) = (V,E(H)).

Theorem 7.5.3. For every intuitionistic fuzzy hypergraph H, a p-coloring of
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H(H) is a K-coloring of H and conversely.

Definition 7.5.4. Let H be an IFDHG. Then, every K− colorings of H which is

a conservative p - coloring of H(H), is called a conservative K− colorings of H.

Definition 7.5.5. Let Hrj ,sj = (V rj ,sj , Erj ,sj) be a (crisp) core directed hyper-

graph of an IFDHG H where V ri,si = V \V rj ,sj 6= φ. Suppose L is a K− colorings

of upper truncated IFDHG, Hrj ,sj which is obtained by extending a p-coloring,

Lj of Hrj ,sj . If L is weekly (or strongly) conservative p - coloring extension of

Lj to the (crisp) core aggregate hypergraph H(Hrj ,sj) of Hrj ,sj with respect to

V ri,si , then L is called a weekly (or strongly) conservative K - coloring extension

of Lj with respect to V ri,si .

Definition 7.5.6. Let H be an IFDHG and suppose Λ = {δi ∈ IFp(v)/i =

1, 2, ....p} is a finite subset of IFp(v). Then Λ is called intuitionistic fuzzy coloring

of H if the following properties are satisfied:

1) h(Λ) = 〈max(µij(vi),min(νij(vi))〉, for all vi ∈ V

2) δi ∩ δj = φ if i 6= j

3) Λri,si is a coloring of Hri,si for 0 < ri < hµ(H) and 0 < si < hν(H).

Theorem 7.5.7. For every intuitionistic fuzzy hypergraph H, a p-coloring of

H(H) is a K-coloring of H and vice-versa.

Note: Λ is sequentially elementary with respect to F (H). There is one-to-one

correspondance between the K− coloring of H and the intuitionistic fuzzy color-

ing of H, if the color set is empty.

Let Λ is an IFC of H = (V,E). Then by Definition 7.5.1, (rn, sn)-cut, Λ
rn,sn of Λ,
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where (rn, sn) is the smallest value in F (H), is p- coloring of the core aggregate

hypergraph H(H) of H which implies Λrn,sn is a K− coloring of H by Theorem

7.5.1.

Conversely, suppose A = {A1, A2, ...Ak} is a K− coloring of H(H). Then A is

a crisp coloring of the core aggregate hypergraph H(H) of H,∪k
i=1Ak = V and

Ai∩Aj = φ if i 6= j. Now Ai, associate an intuitionistic fuzzy subset δi ∈ IFp(v),

with support Ai, defined by

δi(vi) =





〈max(µij(vi)),min(νij(vi))〉|µij , νij ∈ E if vi ∈ Ai

〈0, 1〉 otherwise

Hence Λ = {δ1, δ2, ...., δk} is an IFC of H.

Definition 7.5.8. Let δi ∈ IFp(v). Then the intuitionistic fuzzy subset δi(c) of

V for all vi ∈ V is defined by

δi(c)(v) =





h(δ) if δi(vi) = 〈max(µij(vi)),min(νij(vi))〉|µij , νij ∈ E

〈0, 1〉 otherwise

δi(c) is called the elementary center.

Definition 7.5.9. Let Λ = {δi ∈ IFp(v)/i = 1, 2, ....p}. Then Λi(c) is called

elementary center of Λ, is defined by Λi(c) = {δ1(c), δ2(c), ....δp(c)}, where δi(c) is

the elementary center of δi.

Definition 7.5.10. Let Λ(c) be the elementary center of IFC Λ of H with fun-
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damental sequence F (Λ(c)) = {uΛ1 , uΛ2 , ..., uΛm}, where uΛ1 > uΛ2 > ...uΛm and let t

be a monotonic increasing function on the interval [0, 1] such that t(0) = 0 and

t(1) = 1. Such t is called scaling function.

Definition 7.5.11. Let H be an IFDHG and let t denote a scaling function.

Then χt(H) = min{Γt(Λ)/Λ is an IFC of H} and χ̂t(H) = min{Γ̂t(Λ)/Λ is an

IFC of H} are called Γt - chromatic number and Γ̂t - chromatic number of H

respectively.

Note: If t is the identity mapping on [0, 1], then Γt or Γ̂t are called linear

chromatic numbers of H.

Theorem 7.5.12. Let H be an IFDHG then for every H and for every scaling

function t : [0, 1] → [0, 1], χt(H) ≤ χ(H), χ̂t(H) ≤ χ̂(H) and χ(H) = min{|Λ|/Λ

is an IFC of H} = min{|L|/L is a K - coloring of H} where |Λ| is the number of

edges in Λ and |L| is the number of colors in L.

Example 7.5.2. Consider an IFDHG, H with V = {v1, v2, v3, · · · , v9} and E =

{E1, E2, · · · , E15}:

Here V = {v1, v2, · · · , v9}, E = {E1, E2, · · · , E15} and C(H) = {Hr1,s1 , Hr2,s2}

where Hr1,s1 = ({v1, v2, · · · , v6}, {E1, E2, · · · , E6}) and Hr2,s2 = (V,E).

Since H is elementary, it is ordered.

Thus every primitive coloring of H is an K− coloring of H. Therefore χ(H) = 3,

sinceHr2,s2 has the following primitive coloring: A1 = {Blue(B), Green(G), Y ellow(Y )}

where B = {v1, v4, v9}, G = {v2, v6, v8} and Y = {v3, v5, v7}.

Suppose t is the identity map. Assume χt(H) = Γt(Λ). It is interesting to com-

pare Γt(Λ1) with Γt(Λ2), where Λ1 and Λ2 are the IFC of H.
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Figure 7.5: Chromatic Numbers of H

.

LetA2 = {Blue(B), Green(G), Y ellow(Y ), Red(R),White(W )}, whereB = {v1, v3, v5},

G = {v7}, R = {v8},W = {v9} and Y = {v2, v4, v6}. The restriction, A′
2 of A2 to

Hr1,s1 is χ(H) = 2, A′
2 = {B, Y }.

7.6 Intersecting intuitionistic fuzzy directed hypergraph

Let H = (V,E) be an intuitionistic fuzzy directed hypergraph (IFDHG).

Definition 7.6.1. An IFDHG H = (V,E) is said to be intersecting intuition-

istic fuzzy directed hypergraph, if for each pair of intuitionistic fuzzy hyperedge

{Ei, Ej} ⊆ E, Ei

⋂
Ej 6= φ.

Definition 7.6.2. LetH = (V,E) be an IFDHG and C(H) = {Hr1,s1 , Hr2,s2 , ...., Hrn,sn},

if Hri,si is an intersecting intuitionistic fuzzy directed hypergraph for each i =

1, 2, ..., n then H is K-intersecting IFDHG.

Definition 7.6.3. An IFDHG H = (V,E) is said to be strongly intersecting, if
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for any two edges Ei and Ej contain a common spike of height, h = h(Ei)∧h(Ej).

Theorem 7.6.4. LetH = (V,E) be an IFDHG and suppose C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}.

Then H is intersecting if and only if Hrn,sn = (V rn,sn , Ern,sn) is intersecting.

Proof:

H is intersecting ⇐⇒supp(H)= {supp(Ej)/Ej ∈ E} is intersecting, from Def-

inition 7.5.11

Similarly, each pair of intuitionistic fuzzy hyperedges, {E1, E2, ..., En} ⊆ E

Hr1,s1 , Hr2,s2 , · · · , Hrn,sn are intersecting.

Conversely, let Hrn,sn = (V rn,sn , Ern,sn) is intersecting

Since, supp(H) = {supp(Ej)/Ej ∈ E} is intersecting, H is also intersecting.

Theorem 7.6.5. Let H = (V,E) be an ordered intuitionistic fuzzy directed

hypergraph and let C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}, then H is intersecting if

and only if H is K-intersecting.

Proof:

The proof is direct from Definition 7.6.1 and Theorem 7.5.12.

Theorem 7.6.6. Suppose H = (V,E) is an ordered intersecting IFDHG, then

each intuitionistic fuzzy hyperedge T of H contains a member of Tr(Hh(T )), where

Hh(T ) is the upper truncation ofH at level h(T ). In particular T is an intuitionistic

fuzzy transversal of Hh(T ).

Proof:

Let C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn} and suppose Tj ∈ E. Assume that,

175



(r1, s1) = h(T ), since H is ordered and T r1,s1 6= φ.

Since H is intersecting ⇒ Hrn,sn is also intersecting.

Therefore, T r1,s1 is an intuitionistic fuzzy transversal of Hrn,sn . Let T1 be a min-

imal intuitionistic fuzzy transversal of Hrn,sn contained in T r1,s1 . Since H is

ordered, then there is a nested sequence of sets

Tn ⊇ ....Ti ⊇ .... ⊇ T1

such that, Ti is a minimal intuitionistic fuzzy transversal of Hri,si for every

(ri, si) ∈ F (H)

Let θi be the elementary intuitionistic fuzzy subset with support T ′ and height

(ri, si), for i=1,2,...,n. Then clearly,

n⋃

i=1

θi ∈ Tr(H) and T ′ ⊆ T.

Therefore, each intuitionistic fuzzy hyperedge T of H contains a member of

Tr(Hh(T )).

Theorem 7.6.7. If H = (V,E) is a simple, intersecting IFDHG such that χ(H) >

2, then E = {T ′|T ′ ∈ min(Tr(H))}

Corollary 7.6.8. Suppose if theorem 7.6.7 holds good for χ(H) > 2, then H has

no loops.

Theorem 7.6.9. Let H be an ordered, intersecting IFDHG with

C(H) = {Hr1,s1 , Hr2,s2 , ..., Hrn,sn}. Suppose that χ(Hr1,s1) > 2 and Hrn,sn is
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simple. Then for each 〈ri, si〉 ∈ F (H),

Tr(Hri,si) = {θ(T, 〈ri, si〉/T ∈ Hri,si}

where θ(T, 〈ri, si〉) is an elementary intuitionistic fuzzy subset with support E and

height 〈ri, si〉.

Proof:

By hypothesis, it follows that Hri,si is simple, intersecting and χ(Hri,si) > 2

for each Hri,si ∈ C(H).

By theorem 7.6.7, T is the set of all minimal transversals of H. Thus the set of

Hri,si = Tr(Hri,si), for every (ri, si) ∈ F (H). Hence the desired result.

Theorem 7.6.10. Let H be an IFDHG. Then H is strongly intersecting if and

only if H is K-intersecting.

Proof:

Necessary Part: Suppose that H is strongly intersecting, let Ei and Ej be

edges of Hri,si ∈ C(H). Then there exists two edges E1 and E2 of H such that,

Eri,si
1 = E1 and Eri,si

2 = E2.

Since H is strongly intersecting, both E1 and E2 contain a common spike θvi ,

where 0 ≤ ri ≤ hµ(θvi) and 0 ≤ si ≤ hν(θvi)

Thus, supp(θvi) = {vi} ⊆ Ei ∩ Ej . Hence Hri,si is intersecting and H is K-

intersecting.

Sufficient Part: Suppose that H is K-intersecting, let Fi and Fj be hyperedges

of H and let 〈ri, si〉 = h(Fi) ∧ h(Fj) and let Ei = Fi
ri,si , Ej = Fj

ri,si , then both
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Ei, Ej ∈ Hri,si = Hrj ,sj , where rj+1 < ri ≤ rj , sj+1 < si ≤ sj .

Let 〈rn+1, sn+1〉 = 〈0, 1〉, since Hri,si is intersecting, there exists a vertex vi ∈

Ei∩Ej . There is a spike θvi with support {vi} and height 〈ri, si〉 which is contained

in both Fi and Fj .

Hence H is strongly intersecting.

Theorem 7.6.11. If Hs is intersecting, then H is strongly intersecting.

Proof:

Let C(H) = {Hri,si = (Vi, Ei)|i = 1, 2, ..., n} be the set of core intuitionistic

fuzzy hypergraphs of H and consider the core’s aggregate intuitionistic fuzzy hy-

pergraph,

H(H) = (V,E(H)), where E(H) = ∪{Ei|i = 1, 2, ..., n}

In addition, let (Hs)r
s
m,ssm = (V s

m, E
s
m), represent the core hypergraph of Hs asso-

ciated with the smallest member (rsm, s
s
m) of F (H).

From the construction of Hs it follows that every edge belonging to E(H) contains

an edge of Es
m.

Hence Hs is intersecting ⇒ H is strongly intersecting.

If Hs is intersecting, then by Theorem 7.6.7, (Hs)r
s
m is intersecting, and therefore,

the family of (crisp) edges E(H) is intersecting as well.

Example 7.6.1. Consider an IFDHG H with V = {v1, v2, v3, v4} and E =

{E1, E2, E3} whose incidence matrix is as follows:
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H =




E1 E2 E3

v1 〈0.7, 0.2〉 〈0.7, 0.2〉 〈0.7, 0.2〉

v2 〈0, 1〉 〈0.5, 0.2〉 〈0.5, 0.2〉

v3 〈0, 1〉 〈0.5, 0.4〉 〈0.5, 0.4〉

v4 〈0.3, 0.2〉 〈0, 1〉 〈0.3, 0.2〉




Clearly, h(H) = 〈0.7, 0.2〉.

b

b

b

b

v1

v4

v2

v3

(0.7, 0.2)

(0.
7, 0
.2)

(0.7, 0.2)

(0.7, 0.2)

(0.3, 0.2)

(0.5, 0.2)

(0.5, 0.4)

Figure 7.6: K− intersecting IFDHG

.

Then,

E0.7,0.2 = {{v1, v4}}

E0.5,0.2 = {{v1, v4} , {v1, v2, v3}}

E0.5,0.4 = {{v1, v4} , {v1, v2, v3}}

E0.3,0.2 = {{v1, v4} , {v1, v2, v3} , {v1, v2, v3, v4}}

Thus, 0.3 < r ≤ 0.7 and 0.2 ≤ s ≤ 0.4

Er,s = {v1} = E0.7,0.2
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and for 0 < r ≤ 0.3 and 0.4 ≤ s < 1

Er,s = {{v1, v4} , {v1, v2, v3} , {v1, v2, v3, v4}} = E0.3,0.2

Note that, E0.7,0.2 ⊂ E0.3,0.2

Therefore, E0.7,0.2 ⊂ E0.5,0.2 ⊂ E0.5,0.40.3,0.2

Thus, H is an ordered intuitionistic fuzzy directed hypergraph.

H0.7,0.2 = (V1, E1) = {{v1, v4}}

H0.5,0.2 = (V2, E2) = {{v1, v4} , {v1, v2, v3}}

H0.5,0.4 = (V3, E3) = {{v1, v4} , {v1, v2, v3}}

H0.3,0.2 = (V4, E4) = {{v1, v4} , {v1, v2, v3} , {v1, v2, v3, v4}}

Thus H is a K-intersecting intuitionistic fuzzy directed hypergraph.

Example 7.6.2. Consider an IFDHG H = (V,E) where V = {v1, v2, v3} and

E = {E1, E2, E3} which is represented by the following incidence matrix:

H =




E1 E2 E3

v1 〈0.6, 0.4〉 〈0, 1〉 〈0.6, 0.4〉

v2 〈0.4, 0.3〉 〈0.4, 0.3〉 〈0, 1〉

v3 〈0.5, 0.2〉 〈0.5, 0.2〉 〈0.5, 0.2〉




Clearly, the height of an intuitionistic fuzzy set h(Ej) = 〈max(µij),min(νij)〉,

hence h(H) = (0.6, 0.4)

E0.6,0.4 = {{v1}}

E0.5,0.2 = {{v1, v3}}

E0.4,0.3 = {{v1, v2, v3} , {v2, v3} , {v1, v3}}
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Figure 7.7: Not - ordered intersecting IFDHG

.

Therefore, E0.6,0.4 ⊏ E0.5,0.2 ⊏ E0.4,0.3 but, E0.6,0.4 * E0.5,0.2. Hence, H is not

ordered.

H0.6,0.4 = (V1, E1) = ({v1} , {{v1}})

H0.5,0.2 = (V2, E2) = ({v1, v3} , {{v3} , {v1, v3}})

H0.4,0.3 = (V3, E3) = ({v1, v2, v3} , {{v1, v2, v3} , {v2, v3} , {v3, v1}})

Thus H is not a K-intersecting IFDHG.
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Chapter 8

An application of intuitionistic

fuzzy directed hypergraph in

molecular structure

representation

8.1 Introduction

The first definition of fuzzy graphs was proposed by Kaufmann, from the fuzzy re-

lations introduced by Zadeh. Although Rosenfeld introduced another elaborated

definition, including fuzzy vertex and fuzzy edges, the first definition of intuition-

istic fuzzy graphs was proposed by Atanassov[9]. He defined intuitionistic fuzzy

graph as the set

G = {〈〈x, y〉, µG(x, y), νG(x, y)〉|〈x, y〉 ∈ E1×E2} if the functions µG : E1×E2 →

[0, 1] and νG : E1 × E2 → [0, 1] define the degree of membership and the de-

gree of non-membership, respectively, of the element 〈x, y〉 ∈ E1 × E2 to the set

G ⊂ E1 × E2 and for all 〈x, y〉 ∈ E1 × E2 : 0 ≤ µG(x, y) + νG(x, y) ≤ 1. An
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intuitionistic fuzzy hypergraph (IFHG) [79] is an ordered pair H = (V, E) where

(i) V = {v1, v2, ..., vn}, is a finite set of intuitionistic fuzzy vertices,

(ii) E = {E1, E2, ..., Em} is a family of crisp subsets of V ,

(iii) Ej = {(vi, µj(vi), νj(vj)) : µj(vi), νj(vi) ≥ 0 and µj(vi) + νj(vi) ≤ 1}, j =

1, 2, ...,m,

(iv) Ej 6= φ, j = 1, 2, ...,m,

(v)
⋃

j supp(Ej) = V, j = 1, 2, ...,m.

Here, the hyperedges Ej are crisp sets of intuitionistic fuzzy vertices, µj(vi) and

νj(vi) denote the degrees of membership and non-membership of vertex vi to

edge Ej . Thus, the elements of the incidence matrix of IFHG are of the form

(vij , µj(vi), νj(vj)). The sets (V, E) are crisp sets. In [68], the intersecting IFDHG,

K-intersecting IFDHG and strongly intersecting IFDHG were studied. Here, some

more intersecting concepts of fuzzy hypergraphs in [65] are extended to IFDHGs.

This chapter has five sections: Section 2 gives the notations and theorem which

are used in this work. In section 3, essentially intersecting, essentially strongly

intersecting, skeleton intersecting, non-trivial, sequentially simple and essentially

sequentially simple IFDHGs are defined. Also, it has been proved that if IFDHG

H is ordered and essentially intersecting, then χ(H) ≤ 3. An IFDHGH is strongly

intersecting if and only if H〈ri,si〉 is intersecting for every 〈ri, si〉 ∈ F (H) is proven

and an application of IFDHG in molecular structure representation is also given.
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8.2 Notations and Prerequisites

The notations and theorem used in this work are given below:

H = (V, E) - IFDHG with vertex set V and edge set E

〈µi, νi〉 - degrees of membership and non-membership of the vertex vi

〈µij , νij〉 - degrees of membership and non-membership of the ith vertex in

jth edge

〈µij(vi), νij(vi)〉 - degrees of membership and non-membership of the edges containing vi

h(H) - height of a hypergraph H

F (H) - Fundamental sequence of H

Tr(H) - Intuitionistic Fuzzy Transversals (IFT) of H

C(H) - Core set of H

H〈ri,si〉 - 〈ri, si〉 - level of H

IFp(V ) - Intuitionistic Fuzzy power set of V .

Ẽj - spike reduction of Ej ∈ IFp(V )

φ - empty IFS (i.e., IFS having elements with zero membership and unit

nonmembership values)

Theorem 8.2.1. [68] Let H be an IFDHG. Then H is strongly intersecting if and

only if H is K-intersecting.

8.3 Intersecting Intuitionistic Fuzzy Directed Hypergraphs

In this section, essentially intersecting, essentially strongly intersecting, skeleton

intersecting, non-trivial, sequentially simple and essentially sequentially simple

IFDHGs are defined.
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8.3.1 Essentially Intersecting IFDHGs

Definition 8.3.1. A spike reduction of Ej ∈ IFp(V ), denoted by Ẽj , is defined

by

Ẽj

〈rj ,sj〉
=





Ej
〈rj ,sj〉 if |Ej

〈rj ,sj〉| ≥ 2

φ if |Ej
〈rj ,sj〉| < 2

where rj=min {µj(vi)} ∈ (0, 1] and sj=max {νj(vi)} ∈ [0, 1)

Definition 8.3.2. Let H = (V, E) be an IFDHG. The spike reduced IFDHG of

H, denoted by H̃, is defined as H̃ = (Ṽ , Ẽ), where Ẽ = {Ẽj |Ej ∈ E} ; Ṽ =

⋃
Ẽj∈Ẽ supp(Ẽ) and

〈µj(ṽi), νj(ṽi)〉 =





〈rj , sj〉 if ṽi ∈ supp(Ẽj)

〈0, 1〉 if ṽi /∈ supp(Ẽj)

Example 8.3.1. Consider an IFDHG H with V = {v1, v2, v3, v4, v5} and E =

{E1, E2, E3, E4} whose incidence matrix as follows:

H =




E1 E2 E3 E4

v1 〈0.8, 0.1〉 〈0, 1〉 〈0, 1〉 〈0, 1〉

v2 〈0.6, 0.2〉 〈0.5, 0.2〉 〈0, 1〉 〈0, 1〉

v3 〈0, 1〉 〈0.8, 0.1〉 〈0.3, 0.4〉 〈0, 1〉

v4 〈0.3, 0.6〉 〈0, 1〉 〈0.6, 0.2〉 〈0, 1〉

v5 〈0, 1〉 〈0, 1〉 〈0, 1〉 〈0.5, 0.1〉




Then the incidence matrix of H̃ = (Ṽ , Ẽ), where Ẽ = {Ẽ1, Ẽ2, Ẽ3} and Ṽ =

{ṽ1, ṽ2, ṽ3, ṽ4, ṽ5} is as follows:
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H̃ =




Ẽ1 Ẽ2 Ẽ3

ṽ1 〈0.3, 0.6〉 〈0, 1〉 〈0, 1〉

ṽ2 〈0.3, 0.6〉 〈0.5, 0.2〉 〈0, 1〉

ṽ3 〈0, 1〉 〈0.5, 0.2〉 〈0.3, 0.4〉

ṽ4 〈0.3, 0.6〉 〈0, 1〉 〈0.3, 0.4〉

ṽ5 〈0, 1〉 〈0, 1〉 〈0, 1〉




Note: It is to be noted that there are two changes happened in H̃:

(i) The spike is reduced;

(ii) The degrees of membership and nonmembership of the vertices have been

modified. The graphs of H and H̃ are given in Figure 8.1.
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H H̃

b
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b

b

b
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v2

v5

v3

v4

E1

E2

E3

Figure 8.1

Definition 8.3.3. A IFDHG H is said to be essentially intersecting if H̃ is in-

tersecting. H is said to be essentially strongly intersecting if H̃ is strongly inter-

secting.

Theorem 8.3.4. If IFDHG H is ordered and essentially intersecting, then

χ(H) ≤ 3.
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Proof: Assume that H̃ exists, for otherwise χ(H)=1. Let (H̃)〈rm,sm〉 ∈

C(H̃), where 〈rm, sm〉 is the smallest value of F (H̃). Since H̃ is intersecting,

it follows from known theorem “Let H be an IFDHG and suppose C(H) =

{
H〈r1,s1〉, H〈r2,s2〉, ..., H〈rn,sn〉

}
, then H is intersecting if and only if H〈rn,sn〉 =

(V 〈rn,sn〉, E 〈rn,sn〉) is intersecting.” that (H̃)〈rm,sm〉 is a crisp intersecting hyper-

graph. Therefore, χ(H̃)〈rm,sm〉 ≤ 3 since “If H is a crisp intersecting hypergraph,

then χ(H) ≤ 3.”,

Since H is ordered, H̃ is also ordered. A coloring of (H̃)〈rm,sm〉 must be a prim-

itive coloring of H̃, it follows from known theorem “If H is an ordered IFDHG

and A is a primitive coloring of H , then A is a K -coloring of H” that a coloring

of (H̃)〈rm,sm〉 is a K -coloring of H̃. Therefore, χ(H̃) ≤ 3 implies that χ(H) ≤ 3.

Corollary 8.3.5. If IFDHG H is elementary and essentially intersecting, then

χ(H) ≤ 3.

Corollary 8.3.6. If H is (µ, ν)-tempered IFDHG and essentially intersecting,

then χ(H) ≤ 3.

Definition 8.3.7. An IFDHG is said to be non-trivial if it has at least one edge

E such that |supp(E)| ≥ 2.

Definition 8.3.8. An IFDHG H is said to be sequentially simple if C(H) =

{H〈ri,si〉 = (X〈ri,si〉, E 〈ri,si〉)|〈ri, si〉 ∈ F (H)} satisfies the property that if E ∈

E 〈ri+1,si+1〉 \ E 〈ri,si〉, then E * X〈ri,si〉, where rn < ... < r1, sn < ... < s1. H is said

to be essentially sequentially simple if H̃ is sequentially simple.
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Definition 8.3.9. Suppose H = {Ei ∈ IFp(V )|i = 1, 2, 3, ...,m} is a finite collec-

tion of intuitionistic fuzzy subsets of V and let r, s ∈ (0, 1]. Then H|〈r,s〉 = {E ∈

IFp(V )|h(E) = 〈r, s〉} is the set of edges of height 〈r, s〉. In particular, H|〈r,s〉

is the partial directed hypergraph of H = (V, E) with edgeset E|〈r,s〉, provided

E|〈r,s〉 6= φ.

Definition 8.3.10. Let Hi = (Xi, Ei), i = 1, 2 be IFDHGs. Then H1 � H2 if

every edge of H1 contains an edge of H2.

Theorem 8.3.11. An IFDHG H is strongly intersecting if and only if H〈ri,si〉 �

Tr(H〈ri,si〉) for every H〈ri,si〉 ∈ C(H).

Proof: By Theorem 8.2.1, known definition and lemma “A crisp hypergraph H

is intersecting if and only if H � Tr(H)”, H is strongly intersecting. ⇔ H is

K-intersecting. ⇔ H〈ri,si〉 is intersecting for all H〈ri,si〉 ∈ C(H) ⇔ H〈ri,si〉 �

Tr(H〈ri,si〉) for all H〈ri,si〉 ∈ C(H).

Theorem 8.3.12. H is a strongly intersecting IFDHG if and only if for every

〈ri, si〉 ∈ F (H), (H〈ri,si〉)|〈ri,si〉 � Tr(H〈ri,si〉).

Proof:

Suppose for every 〈ri, si〉 ∈ F (H), (H〈ri,si〉)|〈ri,si〉 � Tr(H〈ri,si〉). For each

H〈ri,si〉 ∈ C(H), the edge set E(H〈ri,si〉) = {γ〈ri,si〉|γ ∈ (H〈ri,si〉)|〈ri,si〉 � {τ 〈ri,si〉|τ ∈

Tr(H〈ri,si〉)} = Tr(E(H〈ri,si〉)). Hence, H〈ri,si〉 � Tr(H〈ri,si〉), for every H〈ri,si〉 ∈

C(H) and by Theorem 8.2.1, H is strongly intersecting.

Conversely, suppose H is strongly intersecting. Let γ ∈ H|〈r1,s1〉, where 〈r1, s1〉

is the largest member of F (H). Let H〈rj ,sj〉 ∈ C(H). To show that γ〈rj ,sj〉 is a
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transversal of H〈rj ,sj〉 For suppose E ∈ H〈rj ,sj〉. Then there is an edge η of H such

that η〈rj ,sj〉 = E. Since H is strongly intersecting, there is a spike σx such that

h(σx) = h(γ) ∧ h(η) = h(η) ≥ 〈rj , sj〉, and support {x}, which is contained in

both γ and η.

Hence, x ∈ E ∩ α〈rj ,sj〉. Thus, γ is a transversal of H and therefore con-

tains a member of Tr(H). Therefore, (H〈ri,si〉)|〈ri,si〉 � Tr(H〈r1,s1〉). Using The-

orem 8.2.1, H is K-intersecting. Consequently, by Theorem 8.2.1, it follows that

H〈ri,si〉 must be strongly intersecting. Hence (Hri,si)|〈ri,si〉 � Tr(H〈ri,si〉), for each

〈ri, si〉 ∈ F (H).

Corollary 8.3.13. Let H be an IFDHG with C(H) = {H〈ri,si〉|〈ri, si〉 ∈ F (H)}.

Then H〈ri,si〉 � Tr(H〈ri,si〉), for every Hri,si ∈ C(H) if and only if (Hri,si)|〈ri,si〉 �

Tr(H〈ri,si〉), for every 〈ri, si〉 ∈ F (H).

Theorem 8.3.14. An IFDHG H is strongly intersecting if and only if H〈ri,si〉 is

intersecting for every 〈ri, si〉 ∈ F (H).

Proof: By applying the Theorem,

“Let H be an IFDHG and suppose C(H) =
{
H〈r1,s1〉, H〈r2,s2〉, ..., H〈rn,sn〉

}
.

Then H is intersecting if and only if H〈rn,sn〉 = (V 〈rn,sn〉, E 〈rn,sn〉) is intersecting”

to H〈ri,si〉, and by Theorem 8.2.1, H〈ri,si〉 is intersecting for every 〈ri, si〉 ∈ F (H)

⇔ E(H〈ri,si〉) is intersecting for each H〈ri,si〉 ∈ C(H) ⇔ H is K-intersecting ⇔ H

is strongly intersecting.
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8.3.2 Application of IFDHG in Chemistry

Chemical compounds are formed by the joining of two or more atoms. A chemical

bond is a lasting attraction between atoms that enables the formation of chem-

ical compounds [29]. There are two major chemical bond classifications namely

Primary (Strong) bonds and Secondary (Weak) bonds each with identifiable sub-

groups as ionic, covalent, metallic and Hydrogen, Van der Waal’s bonds respec-

tively.

The power of an atom in a molecule to attract electrons to itself is called elec-

tronegativity. Covalent bonds are formed when the electronegativity difference

(Dc) between the atoms is < 1.7. Ionic bonds are formed when the electroneg-

ativity difference (Dc) between the atoms is > 1.7. Based on Pauling scale for

Electronegativity, Carbon (C) atom has electonegativity 2.5, Oxygen (O) has 3.5

and Hydrogen (H) has electronegativity 2.1.

Bond length is the distance between centers of atoms bonded within a molecule.

Bond length depends on three main factors such as size of atoms, bond strength

and multiplicity of bonds. Also, the temperature and pressure affect the bondlength

between atoms and hence, uncertainty exists in the molecular structure. therefore,

the concept of IFDHG can also be used as a tool to deal this kind of uncertainity.

An IFDHG H = (V, E) is used to represent molecular structure, where x ∈ V

corresponds to an atom, intuitionistic fuzzy directed hyperedges correspond to

bonds between the atoms. Such IFDHGs are known as molecular IFDHGs. The

directions of intuitionistic fuzzy hyperedges represent the direction towards the

atom which has more electronegativity. Membership amd non-membership values
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of the intuitionistic fuzzy hyperedges depends on the length of the bonds between

the atom. Bond length depends on bond order between atoms, electronegativity

force of the atoms and intermolecular forces between the molecules.

In Figure 8.2(a), the molecular structure of water is shown. Here, the dotted
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Figure 8.2

lines represent the hydrogen bonds between the Oxygen and Hydrogen atoms,

remaining are covalent bonds. In Figure 8.2(b), molecular IFDHG representation

of water is shown. In this molecular IFDHG, the directions represent the direction

towards the atom which has more electronegativity. Intuitionistic fuzzy directed

hyperedge E1 connect two Hydrogen atoms with an Oxygen atom. Oxygen atom

has more eletronegativity than the Hydrogen atom. So the hd(E1) is Oxygen

atom and two hydrogen atoms are tl(E1).

The membership and non-membership values of Ei, i = 1, ..., 7 is denoted by

〈µ(Ei), ν(Ei)〉. The bond length of the covalent bond between Hydrogen and

Oxygen atoms is 0.96A0(Angstrom) and hydrogen bond length between these two
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atoms is 1.97A0(Angstrom).

In intuitionistic fuzzy triangular function, let a = 0.5, b = 1.5 and c = 3.0, x =

0.96 (Bond length). Therefore, 〈µ(Ei), ν(Ei)〉 = 〈0.4, 0.5〉 for i = 1, 3, 4 and 6. In

a similar way, the membership and non-membership values of intuitionistic fuzzy

hyperedges are calculated.
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Chapter 9

Multi-parameter temporal

intuitionistic fuzzy sets

9.1 Introduction

Fuzzy sets (FSs) introduced by L.A.Zadeh in 1965 [110] are generalization of crisp

sets. FSs which incorporate the partial membership of the elements of the set

showed meaningful applications in several fields like science, engineering, medicine

etc. K.T.Atanassov introduced the concept of intuitionistic fuzzy sets (IFSs) in

1983 [7] as an extension of FSs. These sets include not only the membership of

the element in the set but also the non-membership of the element along with

degree of hesitancy. K.T.Atanassov also extended the concept of IFSs into tem-

poral intuitionistic fuzzy sets (TIFSs) [9]. TIFSs give a possibility to trace the

changes of the object considered for all the time moments from a time scale and

permit more detailed estimations of the real time processes flowing in time. Intu-

itionistic fuzzy multi-dimensional sets (IFMDSs) were introduced and described

in [4-8] as extensions of TIFSs. Membership functions convert crisp into fuzzy val-
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ues within the system. Depending upon the model, special type of membership

functions which take the shape of triangles, trapezoids, bell curves etc. can be

chosen for consideration. In case of IFSs, both membership and non-membership

functions are required to convert crisp into intuitionistic fuzzy values within the

system. For the sake of convenience, the term ‘intuitionistic fuzzification func-

tions’ is used to denote membership and non-membership functions through out

this chapter. The rest of the chapter is organized as follows. In Section 2, a short

review of the basic definitions regarding FSs, IFSs, TIFSs and IFMDSc are given.

Multi-parameter temporal intuitionistic fuzzy sets (MTIFSs) are proposed as gen-

eralization of IFMDSs and TIFSs and a few relations and operations are defined

on them in Section 3. Extended triangular intuitionistic fuzzification functions

of a TIFS and MTIFS are defined in Section 4 and geometric interpretation of a

TIFS is shown in Section 5 with an illustration.

9.2 Preliminaries

In this section, a concise overview of the basic definitions related to FSs, IFSs and

TIFSs are presented.

Definition 9.2.1. [9] Let E be the universe and T be a non-empty set of time

moments. Then, a temporal intuitionistic fuzzy set (TIFS) is an object having

the form

A(T ) = {〈x, µA(x, t), νA(x, t)〉/(x, t) ∈ E × T}

where

(i) A ⊂ E is a fixed set.
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(ii) µA(x, t) and νA(x, t) denote the degrees of membership and non-membership

respectively of the element (x, t) such that 0 ≤ µA(x, t) + νA(x, t) ≤ 1 for

all (x, t) ∈ E × T

Definition 9.2.2. [17] Let the sets Z1, Z2, . . . , Zn be fixed and let for each i (1 ≤

i ≤ n) : zi ∈ Zi. Let the set E be fixed. An IFMDS A in E × Z1 × Z2 × · · · × Zn

is an object of the form

A(Z1, Z2, . . . , Zn) = {〈x, µA(x, z1, z2, . . . , zn), νA (x, z1, z2, . . . , zn)〉/(x, z1, z2, . . . , zn) ∈

E × Z1 × Z2 × · · · × Zn}

where

(i) µA(x, z1, z2, . . . , zn) + νA (x, z1, z2, . . . , zn) ≤ 1 for every (x, z1, z2, . . . , zn) ∈

E × Z1 × Z2 × · · · × Zn.

(ii) µA(x, z1, z2, . . . , zn) and νA (x, z1, z2, . . . , zn) are the degrees of membership

and non-membership respectively, of the element (x, z1, z2, . . . , zn) ∈ E ×

Z1 × Z2 × · · · × Zn.

9.3 Multi-parameter Temporal Intuitionistic Fuzzy Sets

The problems occurring in real life are not only uncertain but they often involve

distinct set of parameters. These are dealt with the IFMDSs described in [21]-[25].

To meet out the situation when the system is also dynamic, in addition to time

in the TIFSs, a set of parameters are are introduced in multi-parameter temporal

intuitionistic fuzzy sets (MTIFSs). This set is derived as a special case of IFMDSs

introduced in [17].
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Definition 9.3.1. Let E be the Universe, T be a non-empty set of time moments

and P = (P1, P2, · · ·Pn),

Pi, i = 1, 2, . . . , n are distinct sets of parameters on which E depends. Let p be an

n−tuple (p1, p2, · · · pn), where pi ∈ Pi, i = 1, 2, . . . , n. Then a multi- parameter

temporal intuitionistic fuzzy set (MTIFS) defined on E is an object of the form

A(T, P ) =
{
〈x, µA(x, t, p), νA(x, t, p)〉/(x, t, p) ∈ E × T ×

∏n
i=1 Pi

}

where

(i) A ⊂ E is a fixed set.

(ii) µA(x, t, p) and νA(x, t, p) denote the degrees of membership and non-membership

respectively of the element (x, t, p) ∈ E × T ×
∏n

i=1 Pi such that 0 ≤

µA(x, t, p) + νA(x, t, p) ≤ 1 for all (x, t, p) ∈ E × T ×
∏n

i=1 Pi.

Note:

(i) Multi-parameter TIFS is a TIFS when P = (φ, φ . . . , φ).

(ii) Multi-parameter TIFS is an IFS when P = (φ, φ . . . , φ) and T is a singleton

set.

(iii) Multi-parameter TIFS is an IFMDS when T is a singleton set.

(iv) The notations P = (P1, P2, · · ·Pn) and p = (p1, p2, · · · pn), where pi ∈ Pi are

used through out this paper.

(v) Each MTIFS is a IFMDS for which Z1 = T, Z2 = P1, Z3 = P2, · · ·Zn+1 =

Pn. The present form of MTIFS is more suitable for the investigation of
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dynamical processes in which the time-component is very important and

plays a central role.

Definition 9.3.2. The operators C∗ and I∗ over a MTIFS are defined as follows:

C∗ (A (T, P )) =

{〈
x,max

t∈T
µA(x, t, p),min

t∈T
νA(x, t, p)

〉
/x ∈ E

}

I∗ (A (T, P )) =

{〈
x,min

t∈T
µA(x, t, p),max

t∈T
νA(x, t, p)

〉
/x ∈ E

}

The following results are derived from IFMDSs [21]-[25].

Theorem 9.3.3. For every MTIFS A(T, P ), C∗(A(T, P )) and I∗(A(T, P )) are

MTIFSs.

Proof. Let max
t∈T

µA(x, t, p) = µA(x, t
′, p) for some t′ ∈ T and

min
t∈T

νA(x, t, p) = νA(x, t
′′, p) for some t′′ ∈ T.

Then, νA(x, t
′′, p) ≤ νA(x, t

′, p) and

max
t∈T

µA(x, t, p) + min
t∈T

νA(x, t, p) = µA(x, t
′, p) + νA(x, t

′′, p)

≤ µA(x, t
′, p) + νA(x, t

′, p)

≤ 1

Hence C∗(A(T, P )) is a MTIFS. Also, I∗(A(T, P )) is a MTIFS can be proved in

a similar manner. �

Theorem 9.3.4. For every MTIFS A(T, P ),

C∗ (C∗(A(T, P ))) = C∗(A(T, P ))
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C∗ (I∗(A(T, P ))) = I∗(A(T, P ))

I∗ (C∗(A(T, P ))) = C∗(A(T, P ))

I∗ (I∗(A(T, P ))) = I∗(A(T, P ))

Theorem 9.3.5. For every MTIFS A(T, P ),

C (C∗(A(T, P ))) = C∗(C(A(T, P )))

I (I∗(A(T, P ))) = I∗(I(A(T, P )))

Proof.

C(C∗(A(T, P )) = C

({〈
x,max

t∈T
µA(x, t, p),min

t∈T
νA(x, t, p)

〉
/x ∈ E

})

=

{〈
x,max

x∈E
max
t∈T

µA(x, t, p),min
x∈E

min
t∈T

νA(x, t, p)
〉
/x ∈ E

}

=

{〈
x,max

t∈T
max
x∈E

µA(x, t, p),min
t∈T

min
x∈E

νA(x, t, p)
〉
/x ∈ E

}

= C∗(C(A(T, P )))

I(I∗(A(T, P )) = I

({〈
x,min

t∈T
µA(x, t, p),max

t∈T
νA(x, t, p)

〉
/x ∈ E

})

=

{〈
x,min

x∈E
min
t∈T

µA(x, t, p),max
x∈E

max
t∈T

νA(x, t, p)
〉
/x ∈ E

}

=

{〈
x,min

t∈T
min
x∈E

µA(x, t, p),max
t∈T

max
x∈E

νA(x, t, p)
〉
/x ∈ E

}

= I∗(I(A(T, P )))

�
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Theorem 9.3.6. For every two MTIFSs A(T ′, P ) and B(T ′′, P ),

C∗(A(T ′, P ) ∩ B(T ′′, P )) ⊂ C∗(A(T ′, P )) ∩ C∗(B(T ′′, P ))

C∗(A(T ′, P ) ∪ B(T ′′, P )) = C∗(A(T ′, P )) ∪ C∗(B(T ′′, P ))

I∗(A(T ′, P ) ∩ B(T ′′, P )) = I∗(A(T ′, P )) ∩ C∗(B(T ′′, P ))

I∗(A(T ′, P ) ∪ B(T ′′, P )) ⊃ I∗(A(T ′, P )) ∪ I∗(B(T ′′, P ))

9.3.1 Basic relations and operations on MTIFSs

Let E be the Universe. T
′

and T
′′

are any two non-empty sets of time moments

and P = (P1, P2, · · ·Pn) are distinct sets of parameters on which E depends . Let

A(T
′

, P ) and B(T
′′

, P ) are any two MTIFSs defined as follows.

A(T
′

, P ) =

{
〈x, µA(x, t, p), νA(x, t, p)〉/(x, t, p) ∈ E × T

′ ×
n∏

i=1

Pi

}

and

B(T
′′

, P ) =

{
〈x, µB(x, t, p), νB(x, t, p)〉/(x, t, p) ∈ E × T

′′ ×
n∏

i=1

Pi

}

Let

µA(x, t, p) =





µA(x, t, p), t ∈ T
′

0, t ∈ T
′′ − T

′

µB(x, t, p) =





µB(x, t, p), t ∈ T
′′

0, t ∈ T
′ − T

′′
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νA(x, t, p) =





νA(x, t, p), t ∈ T
′

1, t ∈ T
′′ − T

′

νB(x, t, p) =





νB(x, t, p), t ∈ T
′′

1, t ∈ T
′ − T

′′

Then, the basic set operations on the two sets A(T
′

, P ) and B(T
′′

, P ) are defined

as follows.

1. Inclusion (T
′

= T
′′

= T ) A(T, P ) ⊂ B(T, P ) iff µA(x, t, p) ≤ µB(x, t, p) and

νA(x, t, p) ≥ µB(x, t, p)∀ (x, t, p) ∈ E × T ×
∏n

i=1 Pi.

2. Equality (T
′

= T
′′

= T )

A(T, P ) = B(T, P ) iff µA(x, t, p) = µB(x, t, p) and

νA(x, t, p) = νB(x, t, p) ∀ (x, t, p) ∈ E × T ×
∏n

i=1 Pi.

3. Complement Ā(T, P ) =
{
〈x, νA(x, t, p), µA(x, t, p)〉/(x, t, p) ∈ E × T ×

∏n
i=1 Pi

}
.

4. Intersection

A(T
′

, P )∩B(T
′′

, P ) = {〈x,min(µA(x, t, p), µB(x, t, p)),max(νA(x, t, p), νB(x, t, p))〉}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

5. Union A(T
′

, P )∪B(T
′′

, P ) = {〈x,max(µA(x, t, p), µB(x, t, p)),min(νA(x, t, p), νB(x, t, p))〉}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

6. Addition A(T ′, P )⊕B(T ′′, P ) =

{〈x, (µA(x, t, p) + µB(x, t, p)− µA(x, t, p).µB(x, t, p), (νA(x, t, p).νB(x, t, p))〉}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.
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7. Multiplication A(T ′, P )⊗B(T ′′, P ) =

{〈x, (µA(x, t, p).µB(x, t, p)), νA(x, t, p) + νB(x, t, p)− (νA(x, t, p).νB(x, t, p)〉}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

8. Averaging Operator A(T ′, P )@B(T ′′, P ) =
{
〈x, 12(µA(x, t, p) + µB(x, t, p)),

1
2(νA(x, t, p) + νB(x,

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

9. A(T ′, P )⊘B(T ′′, P ) =
{
〈x,

√
µA(x, t, p).µB(x, t, p),

√
νA(x, t, p).νB(x, t, p)〉

}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

10. A(T ′, P ) ∗B(T ′′, P ) =
{
〈x, µA(x,t,p)+µB(x,t,p)

2(µA(x,t,p).µB(x,t,p)+1)
,

νA(x,t,p)+νB(x,t,p)
2(νA(x,t,p).νB(x,t,p)+1)

〉
}

where (x, t, p) ∈ E × (T ′ ∪ T ′′)×
∏n

i=1 Pi.

9.3.2 Algebraic Laws in MTIFSs

Let A, B and C are any three MTIFSs defined on E , then the following algebraic

laws hold good.

1. (Ac)c = A (complementary law)

2. (i) A ∪ A = A

(ii) A ∩ A = A(idempotent laws).

3. (i) A ∪ B = B ∪ A

(ii) A ∩ B = B ∩ A (commutative laws)

4. (i) (A ∪ B) ∪ C = A ∪ (B ∪ C)

(ii) (A ∩ B) ∩ C = A ∩ (B ∩ C)(associative laws)
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5. (i) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

(ii) A∩ (B∪C) = (A∩B)∪ (A∩C) (distributive laws). Right distributive

laws also holds.

6. (i) (A ∪ B)c = Ac ∩ Bc

(ii) (A ∩ B)c = Ac ∪ Bc(De morgan’s laws)

7. (i) A ∩ (A ∪ B) = A

(ii) A ∪ (A ∩ B) = A (absorption laws).

8. (i) A⊕ B = B ⊕ A

(ii) A⊗ B = B ⊗ A

9. (i) A⊕ (B ⊕ C) = (A⊕B)⊕ C

(ii) A⊗ (B ⊗ C) = (A⊗B)⊗ C

10. (i) (A⊕B)c = (A)c ⊗ (B)c

(ii) (A⊗B)c = (A)c ⊕ (B)c

11. (i) A⊕ (B ∪ C) = (A⊕ B) ∪ (A⊕ C)

(ii) A⊕ (B ∩ C) = (A⊕ B) ∩ (A⊕ C)

(iii) A⊗ (B ∪ C) = (A⊗ B) ∪ (A⊗ C)

(iv) A⊗ (B ∩ C) = (A⊗ B) ∩ (A⊗ C)
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9.4 Triangular intuitionistic fuzzification functions for TIFS

and MTIFS

Fuzzification plays an important role in fuzzy logic controllers. Designing intu-

itionistic fuzzification functions is necessary to develop intuitionistic fuzzy logic

controller system for a TIFS and MTIFS. In this section, extended triangular

intuitionistic fuzzification functions for TIFS and MTIFS are established.

Definition 9.4.1. Let E be the Universe, T be a non-empty set of time moments

and A(T ) be the corresponding temporal intuitionistic fuzzy set defined on E.

Then, the extended triangular intuitionistic fuzzification functions for the TIFS

A(T ) are defined as

µA(x, t) =





x+t−(a+c)
m+m′−(a+c)

a ≤ x ≤ m, c ≤ t ≤ m′

x+t−(a+m′)
m+d−(a+m′)

a ≤ x ≤ m,m′ < t ≤ d

b+m′−(x+t)
b+m′−(m+c)

m < x ≤ b, c ≤ t ≤ m′

b+d−(x+t)
b+d−(m+m′)

m < x ≤ b,m′ < t ≤ d

0 otherwise

,

νA(x, t) =





m+m′−(x+t)
m+m′−(a+c)

a ≤ x ≤ m, c ≤ t ≤ m′

m+d−(x+t)
m+d−(a+m′)

a ≤ x ≤ m,m′ < t ≤ d

x+t−(m+c)
b+m′−(m+c)

m < x ≤ b, c ≤ t ≤ m′

x+t−(m+m′)
b+d−(m+m′)

m < x ≤ b,m′ < t ≤ d

1 otherwise

203



where a ≤ x ≤ b; a < m < b; c ≤ t ≤ d and c < m′ < d.

Definition 9.4.2. Let E be the universe, T be a non empty set of time moments

and P be a set of parameters on which E depends and A(T, P ) be the MTIFS

defined on E. Then the extended triangular intuitionistic fuzzification functions

for the MTIFS A(T, P ) are defined as

µA(x, t, p) =





x+t+
∑

pi−(a+c+
∑

ei)
m+m′+

∑
m′′

i −(a+c+
∑

ei)
a ≤ x ≤ m, c ≤ t ≤ m′, ei ≤ pi ≤ m′′

i

·

·

·

b+d+
∑

fi−(x+t+
∑

pi)
b+d+

∑
fi−(m+m′+

∑
m′′

i )
m < x ≤ b,m′ < t ≤ d,m′′

i < pi ≤ fi

0 otherwise

and
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νA(x, t, p) =





m+m′+
∑

m′′
i −(x+t+

∑
pi)

m+m′+
∑

m′′
i −(a+c+

∑
ei)

a ≤ x ≤ m, c ≤ t ≤ m′, ei ≤ pi ≤ m′′
i

·

·

·

x+t+
∑

pi−(m+m′+
∑

m′′
i )

b+d+
∑

fi−(m+m′+
∑

m′′
i )

m < x ≤ b,m′ < t ≤ d,m′′
i < pi ≤ fi

1 otherwise

where

a ≤ x ≤ b; a < m < b; c ≤ t ≤ d; c < m′ < d; ei ≤ pi ≤ fi and

ei < m′′
i < fi, i = 1, 2, . . . , n.

Special Case (P = P1)

Extended triangular intuitionistic fuzzification functions for a single parameter

set are as follows:
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µA(x, t, p) =





x+t+p−(a+c+e)
m+m′+m′′−(a+c+e)

a ≤ x ≤ m, c ≤ t ≤ m′, e ≤ p ≤ m′′

x+t+p−(a+c+m′′)
m+m′+f−(a+c+m′′)

a ≤ x ≤ m, c ≤ t ≤ m′,m′′ < p ≤ f

x+t+p−(a+m′+e)
m+d+m′′−(a+m′+e)

a ≤ x ≤ m,m′ < t ≤ d, e ≤ p ≤ m′′

x+t+p−(a+m′+m′′)
m+d+f−(a+m′+m′′)

a ≤ x ≤ m,m′ < t ≤ d,m′′ < p ≤ f

b+m′+m′′−(x+t+p)
b+m′+m′′−(m+c+e)

m < x ≤ b, c ≤ t ≤ m′, e ≤ p ≤ m′′

b+m′+f−(x+t+p)
b+m′+f−(m+c+m′′)

m < x ≤ b, c ≤ t ≤ m′,m′′ < p ≤ f

b+d+m′′−(x+t+p)
b+d+m′′−(m+m′+e)

m < x ≤ b,m′ < t ≤ d, e ≤ p ≤ m′′

b+d+f−(x+t+p)
b+d+f−(m+m′+m′′)

m < x ≤ b,m′ < t ≤ d,m′′ < p ≤ f

0 otherwise

206



νA(x, t, p) =





m+m′+m′′−(x+t+p)
m+m′+m′′−(a+c+e)

a ≤ x ≤ m, c ≤ t ≤ m′, e ≤ p ≤ m′′

m+m′+f−(x+t+p)
m+m′+f−(a+c+m′′)

a ≤ x ≤ m, c ≤ t ≤ m′,m′′ < p ≤ f

m+d+m′′−(x+t+p)
m+d+m′′−(a+m′+e)

a ≤ x ≤ m,m′ < t ≤ d, e ≤ p ≤ m′′

m+d+f−(x+t+p)
m+d+f−(a+m′+m′′)

a ≤ x ≤ m,m′ < t ≤ d,m′′ < p ≤ f

x+t+p−(m+c+e)
b+m′+m′′−(m+c+e)

m < x ≤ b, c ≤ t ≤ m′, e ≤ p ≤ m′′

x+t+p−(m+c+m′′)
b+m′+f−(m+c+m′′)

m < x ≤ b, c ≤ t ≤ m′,m′′ < p ≤ f

x+t+p−(m+m′+e)
b+d+m′′−(m+m′′+e)

m < x ≤ b,m′ < t ≤ d, e ≤ p ≤ m′′

x+t+p−(m+m′+m′′)
b+d+f−(m+m′+m′′)

m < x ≤ b,m′ < t ≤ d,m′′ < p ≤ f

1 otherwise

where a ≤ x ≤ b; a < m < b; c ≤ t ≤ d; c < m′ < d; e ≤ p ≤ f and e < m′′ < f.

9.5 Geometric representation of the extended triangular

intuitionistic fuzzification functions of a TIFS

In this section, geometric representation of the extended triangular intuitionistic

fuzzification functions of a TIFS given in Definition 9.4.1 are discussed with an il-

lustration. Consider a TIFS X={10,20,30,40,50} with the time domain T={1,2,3}.

Then ,the extended triangular intuitionistic fuzzification values are calculated and

their pictorial representation are shown in Figures 9.1-9.4.

207



30
25

X

20
15

1011.11.21.31.41.5

T

1.61.71.81.92

0.8

1

0

0.4

0.6

0.2

µ
A
, 
ν

A

ν
A

µ
A

Figure 9.1: Membership and non-membership functions for a ≤ x ≤ m & c ≤ t ≤
m′
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Figure 9.2: Membership and non-membership functions for a ≤ x ≤ m & m′ <
t ≤ d
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Chapter 10

A study on Indian Universities

ranking using intercriteria

decision making method

10.1 Introduction

In this chapter, the ICDM method is discussed. InterCriteria Analysis, also known

as InterCriteria Decision Making, is an approach that takes an index matrix con-

taining evaluations of objects against a set of criteria as input and calculates the

degrees of correlation between each pair of the criteria in the form of intuitionistic

fuzzy pairs [19]. The InterCriteria Decision Making introduced by K.T.Atanassov,

D.Mavrov and V.Atanassova [19] is based on the theory of the intuitionistic fuzzy

sets and the index matrices [13]. Using the ICDM method, studies have already

been made on university ranking in two countries Bulgaria (2015) and Poland

(2016) and published in [31] and [54] respectively. This way, the researcher got

motivated to use ICDM in Indian universities’ ranking for the year 2017. Hence, an

attempt has been made to apply InterCriteria Decision Making (ICDM) method

to discuss about the parameters involved in the ratings of Universities in India.
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The purpose is to identify the best correlated groups of indicators in the Rank-

ing System for the Indian Universities. By applying the ICDM approach over

extracted data, which finds the indicators that have the highest dependencies and

to observe their behaviour during the year. This approach helps to determine the

precision and confirm the current weights of the indicators.

The real data extracted from Universities Ranking System, that is from the

sites of a relevant rating system which provide free access to data.

10.2 Preliminaries

In this section, the preliminary definitions required for the present paper are

collected and presented.

Definition 10.2.1. [19] The intuitionistic fuzzy pair (IFP) is an object with the

form 〈a, b〉 where a, b ∈ [0, 1] and a+ b ≤ 1 that is used as an evaluation of some

object or process and which components (a and b) are interpreted as degrees

of membership and non-membership, or degrees of validity and non-validity, or

degree of correctness and non-correctness, etc.

Let x = 〈a, b〉 and y = 〈c, d〉 be two intuitionistic fuzzy pairs, then the relations

are defined as

x < y iff a < c and b > d

x ≤ y iff a ≤ c and b ≥ d

x = y iff a = c and b = d

x ≥ y iff a ≥ c and b ≤ d

x > y iff a > c and b < d.

Definition 10.2.2. [19] Let I be a fixed set of indices and ℜ be the set of all real

numbers. Then index matrix with index sets K and L (K,L ⊂ I), takes the form
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[K,L, {aki,lj}] ≡

l1 l2 ... ln

k1 ak1,l1 ak1,l2 ... ak1,ln

k2 ak2,l1 ak2,l2 ... ak2,ln

.

.

.

km akm,l1 akm,l2 ... akm,ln

where K = {k1, k2, ...., km}, L = {l1, l2, ...., ln} and for 1 ≤ i ≤ m and 1 ≤ j ≤ n :

aki,lj ∈ ℜ.

Definition 10.2.3. [19] The intuitionistic fuzzy index matrix (IFIM) - takes the

form

[K,L, {
〈
µki,lj , νki,lj

〉
}] ≡

l1 l2 ... ln

k1 〈µk1,l1 , νk1,l1〉 〈µk1,l2 , νk1,l2〉 ... 〈µk1,ln , νk1,ln〉
k2 〈µk2,l1 , νk2,l1〉 〈µk2,l2 , νk2,l2〉 ... 〈µk2,ln , νk2,ln〉
.

.

.

km 〈µkm,l1 , νkm,l1〉 〈µkm,l2 , νkm,l2〉 ... 〈µkm,ln , νkm,ln〉
where for every 1 ≤ i ≤ m , 1 ≤ j ≤ n : 0 ≤ µki,lj , νki,lj , µki,lj + νki,lj ≤ 1, i.e.,
〈
µki,lj , νki,lj

〉
is an IFP.

10.3 InterCriteria Decision Making Analysis

In this section, method and description of intercriteria decision making (ICDM)

method and a study on its uses in the indian universities’ ranking system for the

year 2017 are presented.
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10.3.1 InterCriteria Decision Making (ICDM) method

The ICDM approach helps to discover the relationship and examine the corre-

lation between the indicators used in the Bulgarian university ratings [31]. The

idea of InterCriteria Analysis and first steps of this research began in the end of

2013, presented in 12th International Workshop on Intuitionistic Fuzzy Sets and

Generalized Nets, Warsaw (2013) and published in [19] by K.T.Atanassov. The

object can be estimated on the base of several criteria. The number of the criteria

can be reduced by calculating the correlations in each pair of criteria in the form

of intuitionistic fuzzy pairs of values [21]. The intuitionistic fuzzy pairs of values

are the intuitionistic fuzzy evaluation in the interval [0, 1]. The relations can be

established between any two group of indicators Ik and Il.

10.3.2 Description of ICDM method

Let Up be the number of universities, p = 1, 2, ....m and Iq be the number of group

of indicators, q = 1, 2, ..., n. The aim is to evaluate the universities (objects) with

the group of criteria. The index matrix M that contains two sets of indices, one

for rows and another for columns [19].

M =

I1 ... Ik ... Il ... In

U1 aU1,I1 ... aU1,Ik ... aU1,Il ... aU1,In

... ... ... ... ... ... ... ...

Ui aUi,I1 ... aUi,Ik ... aUi,Il ... aUi,In

... ... ... ... ... ... ... ...

Uj aUj ,I1 ... aUj ,Ik ... aUj ,Il ... aUj ,In

... ... ... ... ... ... ... ...

Um aUm,I1 ... aUm,Ik ... aUm,Il ... aUm,In

Let Up is an evaluating object and Iq is an evaluation criteria, for every p, q (1 ≤
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p ≤ m, 1 ≤ q ≤ n). Then aUp,Iq is the evaluation of the p-th object against

the q-th criteria, defined as a real number or another object that is comparable

according to relation R with all the rest elements of the index matrix M [19].

Then the InterCriteria Analysis is applied for calculating evaluations. Assume

that the relation R(aUi,Ik , aUj ,Ik) holds for each i, j, k for the comparability re-

quirement. Let R be the dual relation of R, which is possible only if the relation

R is false, and vice versa [19].

The comparision between every two different criteria are made along all the

objects are evaluated in pairwise. During the comparision, it is maintained one

counter of the number of times when the relation R holds and another counter for

the dual relation R [19].

The number of cases, in which the relation R(aUi,Ik , aUj ,Ik) and R(aUi,Il , aUj ,Il)

are simultaneously satisfied, is denoted by Sµ
k,l

and also the number of cases, in

which the relation R(aUi,Ik , aUj ,Ik) and R(aUi,Il , aUj ,Il) are simultaneously satis-

fied, is denoted by Sν
k,l.

The total number of pairwise comparision between the objects is
m(m− 1)

2
, then

the following inequality holds:

0 ≤ Sµ
k,l

+ Sν
k,l ≤

m(m− 1)

2
.

For every k, l such that 1 ≤ k ≤ l ≤ n, and for m ≥ 2, define two numbers as

µIk,Il = 2
Sµ
k,l

m(m− 1)
, νIk,Il = 2

Sν
k,l

m(m− 1)

which result new index matrix M∗ with intuitionistic fuzzy pairs
〈
µIk,Il , νIk,Il

〉
to

represent an intuitionistic fuzzy evaluation of the relations between every pair of

criteria Ik and Il. In this way, the index matrix M that relates evaluating object

with evaluation criteria can be transformed to another index matrixM∗ that gives

the relations among the criteria [19]:
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M∗ =

I1 ... In

I1
〈
µI1,I1 , νI1,I1

〉
...

〈
µI1,In , νI1,In

〉

... ... ... ...

In
〈
µIn,I1 , νIn,I1

〉
...

〈
µIn,In , νIn,In

〉

The two index matrices Mµ and Mν are more flexible to work in practical

considerations, rather than with the index matrix M∗ of IF pairs [54]. The last

step of the algorithm is to determine the degrees of correlation between the criteria

depending of the choosen threshold for µ and ν.

Let α, β ∈ [0, 1] be the threshold values, against which the values of µIk,Il and

νIk,Il are compared. The Criteria Ik and Il are in:

• (α, β)-positive consonance, if µIk,Il > α and νIk,Il < β;

• (α, β)-negative consonance, if µIk,Il < β and νIk,Il > α;

• (α, β)-dissonance, otherwise.

Certainly, the larger α and/or the smaller β, the less number of criteria may be

simultaneously connected with the relation of (α, β)-positive consonance. The

most information is carried when either the positive or the negative consonance

is as large as possible, while the cases of dissonance are less informative and

are skipped in practical purposes. The Table 3.1 gives the threshold values for

different types of correlations between the criteria [14].
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S.No Type of Correlations Degree of Correlations

1 strong positive consonance [0.95; 1]

2 positive consonance [0.85; 0.95)

3 weak positive consonance [0.75; 0.85)

4 weak dissonance [0.67; 0.75)

5 dissonance [0.57; 0.67)

6 strong dissonance [0.43; 0.57)

7 dissonance [0.33; 0.43)

8 weak dissonance [0.25; 0.33)

9 weak negative consonance [0.15; 0.25)

10 negative consonance [0.5; 0.15)

11 strong negative consonance [0; 0.5)

Table 3.1 Scaling for types of correlation between the criteria [14]

10.3.3 ICDM Analysis to the Indian Universities ranking

system

The Indian University Ranking System 2017 is presented by the Ministry of Hu-

man Resource Development (MHRD) by Government of India under the National

Institutional Ranking Framework (NIRF) [122]. Indian Ranking 2017 builds on

the previous year’s experience, consolidating the Framework, but stand equally

challenging and an equally great experience. In [124], Report of Indian Ranking

System 2017 contains information on top 17 accredited universities , which of-

fer education in a various disciplines. The ranking system contains informations

and data expressed by 17 indicators, which measures different aspects of univer-

sity activities [125]. The parameters have been choosen in such a manner that
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these are equally relevant for various kinds of educational institutions [126]. The

NIRF provides for ranking of institutes in five broad generic parameters, namely

1) Teaching, Learning & Resources, 2) Research and Professional Practice, 3)

Graduation Outcomes, 4) Outreach and Inclusivity, 5) Perception [122]. Each

Parameter has its own subparameters which acts as group of indicators. The final

assessment is provided in the range from 0 to 100.

The parameters which are used for analysis are listed below [125]:

1. Student Strength including Doctoral Students (SS)

2. Faculty-Student Ratio with emphasis on permanent faculty (FSR)

3. Combined metric for Faculty with PhD (or equivalent) and Experience

(FQE)

4. Financial Resources and their Utilisation (FRU)

5. Combined metric for Publications (PU)

6. Combined metric for Quality of Publications (QP)

7. IPR and Patents: Published and Granted (IPR)

8. Footprint of Projects, Professional Practice and Executive Development

Programs (FPPP)

9. Metric for University Examinations (GUE)

10. Metric for Number of Ph.D. Students Graduated (GPHD)

11. Percent Students from other states/countries (Region Diversity RD)

12. Percentage of Women (Women Diversity WD)

13. Economically and Socially Challenged Students (ESCS)

14. Facilities for Physically Challenged Students (PCS)

15. Peer Perception: Employers and Research Investors (PREMP)

16. Peer Perception: Academic Peers (PRACD)

17. Public Perception (PRPUB)
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In Table 3.2 the number of pairs of criteria for year 2017 for the rating of univer-

sities obtained by applying the ICDM method are shown below

Table 3.2 Number of pairs of criteria

Types of correlations Number of pairs of criteria

for the year 2017

positive consonance [0.85; 0.95) 1

weak positive consonance [0.75; 0.85) 10

weak dissonance [0.67; 0.75) 11

dissonance [0.57; 0.67) 25

strong dissonance [0.43; 0.57) 33

dissonance [0.33; 0.43) 23

weak dissonance [0.25; 0.33) 24

weak negative consonance[0.15; 0.25) 9

The correlation between the indicators in 2017 for the ranking of universities are

shown below.

Pair of criteria in positive consonance [0.85;0.95)

• for the year 2017: 2-3;

Pair of criteria in weak positive consonance [0.75;0.85)

• for the year 2017: 2-4, 3-4, 3-11, 4-11, 5-6, 6-15, 6-16, 8-17, 15-16, 15-17;

Pair of criteria in weak dissonance [0.67;0.75)

• for the year 2017: 1-8, 2-11, 5-7, 5-15, 6-8, 6-10, 7-8, 7-15, 7-17, 8-15, 16-17;

Pair of criteria in dissonance [0.57;0.67)

• for the year 2017: 1-6, 1-10, 1-15, 1-17, 2-5, 2-7, 3-5, 3-7, 3-16, 4-5, 4-7, 4-16,

4-17, 5-8, 5-11, 5-16, 5-17, 6-7, 6-17, 7-16, 8-16, 9-13, 10-16, 11-15, 11-16;

Pair of criteria in strong dissonance [0.43;0.57)

• for the year 2017: 1-5, 1-7, 1-12, 1-14, 1-16, 2-8, 2-12, 2-15, 2-16, 2-17, 3-6, 3-8,

3-12, 3-15, 3-17, 4-6, 4-8, 4-12, 4-15, 5-10, 6-11, 7-11, 7-12, 8-10, 8-11, 8-14, 9-12,
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10-12, 10-14, 10-15, 10-17, 11-17, 12-14;

Pair of criteria in dissonance [0.33;0.43)

• for the year 2017: 1-13, 2-6, 2-9, 2-13, 2-14, 3-9, 3-10, 3-13, 4-9, 4-10, 6-14, 7-10,

8-12, 8-13, 9-11, 9-17, 10-11, 11-12, 12-13, 12-17, 13-14, 13-15, 13-17;

Pair of criteria in weak dissonance [0.25;0.33)

• for the year: 1-4, 1-11, 2-10, 3-14, 4-13, 4-14, 5-9, 5-12, 6-12, 7-13, 7-14, 8-9,

9-10, 9-14, 9-15, 10-13, 11-13, 11-14, 12-15, 12-16, 13-16, 14-15, 14-16, 14-17;

Pair of criteria in weak negative dissonance [0.15;0.25)

• for the year 2017: 1-2, 1-3, 1-9, 5-13, 5-14, 6-9, 6-13, 7-9, 9-16;

From the comparison of the results over the period of research 2017 the following

outcomes are obtained and the correlation shows that whether and how pairs of

criteria are related, are given as follows:

• The correlation between them are “positive consonance”, “weak negative con-

sonance”, “weak dissonance”, “dissonance”, “strong dissonance”, “dissonance”,

“weak dissonance”, “weak negative dissonance”.

• There is no pair of criteria in strong positive consonance. That is, no strong

dependencies which shows that, indicators are well choosen.

• The pair of criteria (2-3) in positive consonance are dependent that is related

to each other and are positively correlated.

• There are 10 pairs of criteria in weak positive consonance are dependent that

are weakly related to each other.

• There are 33 pairs of criteria in strong dissonance are independent and they are

not related to each other.

• There are 9 pairs of criteria in weak negative consonance are negatively corre-

lated that is inverse of weak positive correlation.
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Conclusion

In this report, an attempt has been made to introduce intuitionistic fuzzy logic

tools. In addition, on the foundation of the theory of intuitionistic fuzzy sets,

traditional research is also extended by presenting new definitions and properties

of intuitionistic fuzzy statistical tools.

A common architecture of IFLC is designed and the validity of the proposed

architecture is clearly verified through the experimental results. In addition, im-

portant components of intuitionistic fuzzy logic controller namely intuitionistic

fuzzification and intuitionistic defuzzification functions are also defined with suit-

able illustrations.

Intuitionistic fuzzy random variable is defined and some of its properties are

discussed. IF statistical tools like mean, median, mode for IF data defined are very

helpful for developing IF filters in image processing. Four different filtering tech-

niques namely IF mean, IF median, IF maximum, IF minimum filters are defined

and their filtering performance on impulse noise is presented. The performance

of the proposed IF filtering technique is evaluated in MATLAB simulations for

an image that has been subjected to various degrees of corruption with impulse

noise. The results demonstrate the effectiveness of the algorithm.

A new approach has been introduced using intuitionistic fuzzy moving average

and compared with existing crisp and fuzzy moving average operators. Also effec-
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tiveness of the proposed moving average technique is verified with an numerical

data set to make decisions on GDP growth in India.

The concept of distance, center, eccentricity of an intuitionistic fuzzy tree is

introduced. The procedure for intuitionistic fuzzification for numerical data set is

proposed. This report also provides intuitionistic fuzzy tree center based clustering

techniques for numerical data set with multiple attributes to produce clusters. The

algorithm is tested on a data set containing information of 27 nutrients with five

features and implemented on MATLAB.

Some interesting properties of IFDHGs are dealt with p-coloring, K-coloring, p-

chromatic number, spike, spike reduction and skeleton of spike reduction. Further,

it has been proved that if H is an ordered IFDHG and A is a primitive coloring of

H, then A is a K-coloring of H and some other properties have also been analysed.

Chromatic values and chromatic numbers of intuitionistic fuzzy colorings, up-

per and lower truncation, core aggregate, conservative K− coloring of intuition-

istic fuzzy directed hypergraph, elementary center of intuitionistic fuzzy coloring,

f -chromatic value of intuitionistic fuzzy coloring intersecting IFDHG, K− in-

tersecting IFDHG, strongly intersecting IFDHG were studied. Also it has been

proved that IFDHG H is strongly intersecting if and only if it is K− intersecting.

Essentially intersecting, essentially strongly intersecting, skeleton intersecting,

non-trivial, sequentially simple and essentially sequentially simple IFDHG are de-

fined. Also an application of IFDHGs in molecular structure representation has

been given. As this is an initiative taken to represent molecular structures us-

ing IFDHGs, the authors further proposed to apply the properties of IFDHGs to

study and compare the properties of molecular structures of all states of water.

Multi-parameter temporal intuitionistic fuzzy set is defined as a special case

of IFMDS defined in [17] which takes into account the possibility of different
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parameter sets in a TIFS. MTIFS is of great significance as it is a useful tool

in systems with different time domains and with multiple parameters. Some

operators on MTIFSs are also defined. As intuitionistic fuzzification function is the

first step to design intuitionistic fuzzy logic control systems, extended triangular

intuitionistic fuzzification functions are defined for TIFSs and MTIFSs. Further,

the authors proposed to work on other types of intuitionistic fuzzification functions

of TIFSs and MTIFSs and their applications in dynamic systems.

Finally, the Inter Criteria Decision Making (ICDM) method is used to find

some hidden patterns in the data using Indian Ranking 2017 [122]. Indian Ranking

for the year 2017 contains 17 Universities and 17 indicators which are used to

analyze the data to identify the best correlation between the indicators and the

relationship between them.

It is inferred that no pairs of indicators are in strong positive consonance and

thus it leads to non-removal of the criteria in ranking system. In future, the

researchers may consider all pairs of criteria and if there exist any pairs of criteria

in strong positive consonance which will lead to removal of one of the criteria in

the data which has the less informational values. The simplification of the process

of evaluation is due to removal of indicators.
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Intuitionistic Fuzzy Logic Toolbox: Coding and output 
Intuitionistic Fuzzy Triangular Function (iftrif) 

M - File Coding: 

function [y,z]=iftrif(x,a,b,c,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=0; 
    z(j)=1-e; 
elseif(x(j)>a)&&(x(j)<=b) 
    y(j)=((x(j)-a)/(b-a))-e; 
    z(j)=1-((x(j)-a)/(b-a)); 
elseif(x(j)>=b)&&(x(j)<c) 
     y(j)=((c-x(j))/(c-b))-e; 
     z(j)=1-((c-x(j))/(c-b)); 
elseif(x(j)>=c) 
    y(j)=0; 
    z(j)=1-e; 
end 
end 

Command Window coding: 
>> x=-5:5; 

>> x 

x = 

 

    -5    -4    -3    -2    -1     0     1     2     3     4     5 

>> [y,z]=iftrif(x,-5,0,5,0.2); 

>> plot(x,y,x,z) 

>> 

Output: 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5 -0.1 
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0.1 
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0.9 
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––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



 

Intutionistic Fuzzy Trapezoidal Function (iftraf) 

M - File Coding: 

function [y,z]=iftraf(x,a,b,c,d,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=0; 
    z(j)=1-e; 
elseif(x(j)>a)&&(x(j)<b) 
    y(j)=((x(j)-a)/(b-a))-e; 
    z(j)=1-((x(j)-a)/(b-a)); 
elseif(x(j)>=b)&&(x(j)<=c) 
    y(j)=1-e; 
    z(j)=0; 
elseif(x(j)>c)&&(x(j)<d) 
     y(j)=((d-x(j))/(d-c))-e; 
     z(j)=1-((d-x(j))/(d-c)); 
elseif(x(j)>=d) 
    y(j)=0; 
    z(j)=1-e; 
end 
end 
end 

 

Command Window coding: 

 
>> x=45:70; 

>> [y,z]=iftraf(x,50,55,60,65,0.1); 

>> plot(x,y,x,z) 

 

Output: 

 

 

45 50 55 60 65 70 -0.1 
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0.1 
0.2 
0.3 
0.4 

0.5 
0.6 
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––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



Intutionistic Fuzzy R-Function (ifRf) 

M - File Coding: 

function [y,z]=ifRf(x,c,d,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)>=d)  
    y(j)=0; 
    z(j)=1-e; 
elseif(x(j)>c)&&(x(j)<d) 
     y(j)=((d-x(j))/(d-c))-e; 
     z(j)=1-((d-x(j))/(d-c)); 
elseif(x(j)<=c) 
    y(j)=1-e;; 
    z(j)=0; 
end 
end 
end 
 

Command Window coding: 

 
>> x=1:10; 

>> [y,z]=ifRf(x,5.6,5.8,0.2); 

>> plot(x,y,x,z) 

 

Output:
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––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



Intutionistic Fuzzy L-Function (ifLf) 

M - File Coding: 

function [y,z]=ifLf(x,a,b,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=0; 
    z(j)=1-e; 
elseif(x(j)>a)&&(x(j)<b) 
    y(j)=((x(j)-a)/(b-a))-e; 
    z(j)=1-((x(j)-a)/(b-a)); 
elseif(x(j)>=b) 
    y(j)=1-e; 
    z(j)=0; 
end 
end 
end 

 

Command Window coding: 
>> x=1:10; 

>> [y,z]=ifLf(x,5.2,5.4,0.2); 

>> plot(x,y,x,z) 

 

 

Output: 

  

1 2 3 4 5 6 7 8 9 10 -0.1 
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––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



 

Intuitionistic Fuzzy Gaussian Function (ifgaussf) 

M - File Coding: 

function [y,z]=ifgaussf(x,m,k,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
y(j)=exp((-(x(j)-m)^2)/2*k^2)-e; 
z(j)=1-exp((-(x(j)-m)^2)/2*k^2); 
end 
end 

 

Command Window coding: 

 
>> x=0:10; 

>> [y,z]=ifgaussf(x,5,1,0.1); 

>> plot(x,y,x,z) 

 

Output: 
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x 

––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



Intuitionistic Fuzzy Bell-shaped Function (ifbellf) 

 

M - File Coding: 

function [y,z]=ifbellf(x,a,b,c,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
    y(j)=1-e-(1/(1+(abs((x(j)-c)/a))^(2*b))); 
    z(j)=1/(1+(abs((x(j)-c)/a))^(2*b)); 
end 

 

Command Window coding: 
>>x=-10:10; 

>> [y,z]=ifbellf(x,-4,4,0,0.001); 

>> plot(x,y,x,z) 

 

 

 

Output: 
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––––– Membership function 

- - - - -Non Membership function 

 

 

 

 

 

 

 

 

 



Intuitionistic Fuzzy S-shaped Function (ifSf) 

M - File Coding: 

function [y,z]=ifSf(x,a,b,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=0; 
    z(j)=1-e; 
elseif(x(j)>a)&&(x(j)<=((a+b)/2)) 
    y(j)=2*(((x(j)-a)/(b-a))^2)-e; 
    z(j)=1-(2*(((x(j)-a)/(b-a))^2)); 
elseif(x(j)>=((a+b)/2))&&(x(j)<b) 
    y(j)=1-(2*(((x(j)-a)/(b-a))^2))-e; 
    z(j)=2*(((x(j)-a)/(b-a))^2); 
elseif(x(j)>=b) 
     y(j)=1-e; 
     z(j)=0; 
end 
end 

 

 

Command Window coding: 
>> x=0:10; 

>> [y,z]=ifSf(x,5.1,5.5,0.1); 

>> plot(x,y,x,z) 

 

Output: 
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0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

x 

––––– Membership function 
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Intuitionistic Fuzzy Z-shaped Function (ifZf) 

M - File Coding: 

function [y,z]=ifZf(x,a,b,e) 
y=zeros(1,length(x)); 
z=zeros(1,length(x)); 
for j=1:length(x) 
if(x(j)<=a)  
    y(j)=1-e; 
    z(j)=0; 
elseif(x(j)>a)&&(x(j)<=((a+b)/2)) 
    y(j)=1-(2*(((x(j)-a)/(b-a))^2))-e; 
    z(j)=2*(((x(j)-a)/(b-a))^2); 

 
elseif(x(j)>=((a+b)/2))&&(x(j)<b) 
     y(j)=2*(((x(j)-a)/(b-a))^2)-e; 
     z(j)=1-(2*(((x(j)-a)/(b-a))^2)); 
elseif(x(j)>=b) 
     y(j)=0; 
     z(j)=1-e; 
end 
end 

 

Command Window coding: 

 
>> x=0:10; 

>> [y,z]=ifZf(x,5.1,5.5,0.1); 

>> plot(x,y,x,z) 

 

Output:
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––––– Membership function 
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